



#### Zulassungsstelle für Bauprodukte und Bauarten

#### **Bautechnisches Prüfamt**

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts



## **Europäische Technische Bewertung**

### ETA-10/0134 vom 2. Juni 2021

#### **Allgemeiner Teil**

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

enthält

Herstellungsbetrieb

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Europäische Technische Bewertung

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF cool für Beton

Verbunddübel zur Verankerung in Beton

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

CELO Befestigungssysteme GmbH, Plant2 Germany

28 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601, Edition 04/2020

ETA-10/0134 vom 15. Dezember 2016

Z51578.21



## Europäische Technische Bewertung ETA-10/0134

Seite 2 von 28 | 2. Juni 2021

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.



Europäische Technische Bewertung ETA-10/0134

Seite 3 von 28 | 2. Juni 2021

#### **Besonderer Teil**

#### 1 Technische Beschreibung des Produkts

Der "CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel ResiFIX VYSF oder ResiFIX VYSF Cool und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen Ø 8 bis Ø 32 mm oder eine Innengewindestange IG-M6 bis IG-M20.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

## 2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

#### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                                               | Leistung                                   |
|----------------------------------------------------------------------------------------------------|--------------------------------------------|
| Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)  | Siehe Anhang<br>B 2, C 1 bis C 3, C 5, C 7 |
| Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen) | Siehe Anhang<br>C1, C 4, C 6, C 8          |
| Verschiebungen (statische und quasi-statische Einwirkungen)                                        | Siehe Anhang<br>C 9 bis C 11               |
| Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1               | Siehe Anhang<br>C 12 bis C 16              |
| Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C2               | Leistung nicht bewertet                    |

#### 3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

| Wesentliches Merkmal                                              | Leistung                |
|-------------------------------------------------------------------|-------------------------|
| Inhalt, Emission und/oder Freisetzung von gefährlichen<br>Stoffen | Leistung nicht bewertet |



## Europäische Technische Bewertung ETA-10/0134

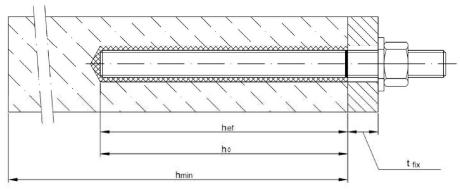
Seite 4 von 28 | 2. Juni 2021

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

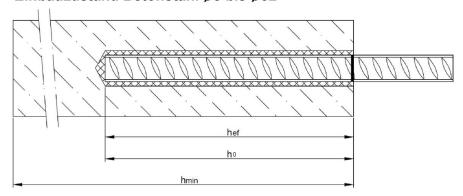
Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

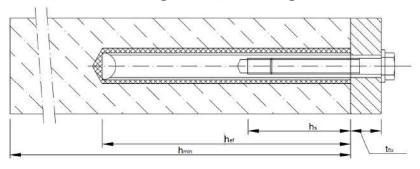
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 2. Juni 2021 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider




#### Einbauzustand Gewindestange M8 bis M30



#### Einbauzustand Betonstahl Ø8 bis Ø32



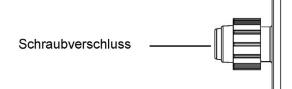
#### Einbauzustand Innengewindeankerstange IG-M6 bis IG-M20



 $t_{fix}$  = Dicke des Anbauteils

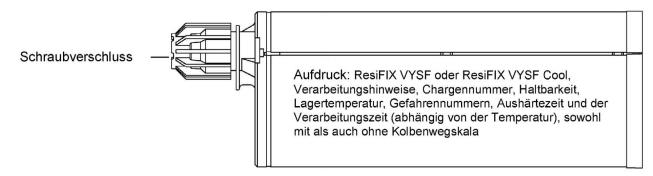
h<sub>ef</sub> = wirksame Verankerungstiefe

h<sub>0</sub> = Bohrlochtiefe

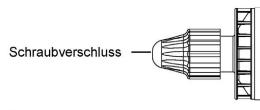

h<sub>min</sub> = Mindestbauteildicke

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton |            |
|-----------------------------------------------------------------|------------|
| Produktbeschreibung Einbauzustand                               | Anhang A 1 |



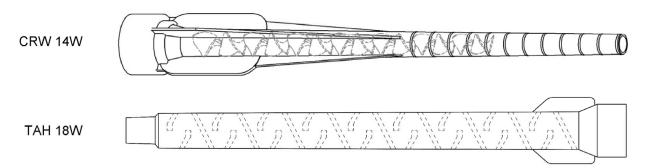

#### Kartusche: ResiFIX VYSF oder ResiFIX VYSF Cool

#### 150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml Kartusche (Typ: Koaxial)




Aufdruck: ResiFIX VYSF oder ResiFIX VYSF Cool, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und der Verarbeitungszeit (abhängig von der Temperatur), sowohl mit als auch ohne Kolbenwegskala

#### 235 ml, 345 ml bis 360 ml und 825 ml Kartusche (Typ: "side-by-side")




#### 165 ml und 300 ml Kartusche (Typ: "Schlauchfolie")

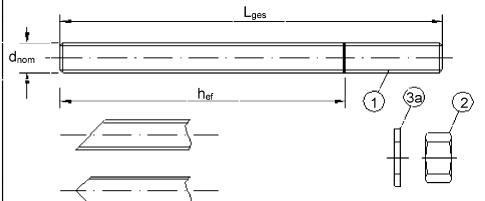


Aufdruck: ResiFIX VYSF oder ResiFIX VYSF Cool, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und der Verarbeitungszeit (abhängig von der Temperatur), sowohl mit als auch ohne Kolbenwegskala

#### Statikmischer



#### CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton

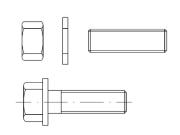

#### Produktbeschreibung

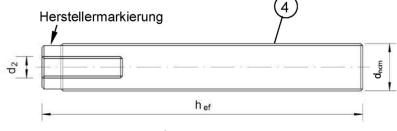
Injektionssystem

Anhang A 2



#### Gewindestange M8, M10, M12, M16, M20, M24, M27, M30 mit Unterlegscheibe und Sechskantmutter





Handelsübliche Gewindestange mit

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

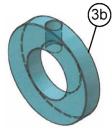
#### Innengewindeankerstange IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

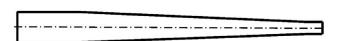
Gewindestange oder Schraube





Markierung: z.B.


Kennzeichnung Innengewinde
Werkszeichen


M8 Gewindegröße (Innengewinde)

A4 zusätzliche Kennung für nichtrostenden Stahl

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

## Verfüllscheibe und Mischerreduzierstück zum Verfüllen des Ringspalts zwischen Anker und Anbauteil





#### CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton

#### Produktbeschreibung

Gewindestange, Innengewindeankerstange und Verfüllscheibe

Anhang A 3



| Ta                                                                                                                                                                                                                                                                                                                                                                                                                                   | belle A1: Werkstoffe                                                                                                 |                                                                      |        |                                         |                                         |                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|-----------------------------------------|-----------------------------------------|---------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benennung                                                                                                            | Werkstoff                                                            |        |                                         |                                         |                     |  |  |
| Stahlteile aus verzinktem Stahl (Stahl gemäß EN ISO 683-4:2018 oder EN 10263:2001)                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                      |        |                                         |                                         |                     |  |  |
| - galvanisch verzinkt ≥ 5 μm gemäß EN ISO 4042:2018 oder<br>- feuerverzinkt ≥ 40 μm gemäß EN ISO 1461:2009 und EN ISO 10684:2004+AC:2009 oder                                                                                                                                                                                                                                                                                        |                                                                                                                      |                                                                      |        |                                         |                                         |                     |  |  |
| - leuel verzinkt ≥ 40 μm gemäß EN ISO 1461.2009 und EN ISO 10664.2004+AC.2009 oder<br>- diffusionsverzinkt ≥ 45 μm gemäß EN ISO 17668:2016                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                      |        |                                         |                                         |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                             | Festigkeitsklasse                                                    |        | Charakteristische<br>Stahlfestigkeit    | Charakteristische<br>Streckgrenze       | Bruchdehnung        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      |                                                                      | 4.6    | f <sub>uk</sub> = 400 N/mm <sup>2</sup> | f <sub>vk</sub> = 240 N/mm²             | A <sub>5</sub> > 8% |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cowindostonae                                                                                                        |                                                                      |        | f <sub>uk</sub> = 400 N/mm <sup>2</sup> | J                                       | A <sub>5</sub> > 8% |  |  |
| !                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gewindestange                                                                                                        | gemäß                                                                |        | f <sub>uk</sub> = 500 N/mm <sup>2</sup> | J.,                                     | A <sub>5</sub> > 8% |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | EN ISO 898-1:2013                                                    |        | f <sub>uk</sub> = 500 N/mm <sup>2</sup> | •                                       | A <sub>5</sub> > 8% |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      |                                                                      |        | f <sub>uk</sub> = 800 N/mm <sup>2</sup> | J · ·                                   |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      |                                                                      | 4      |                                         | en der Klasse 4.6 c                     |                     |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sechskantmutter                                                                                                      | gemäß                                                                | 5      |                                         | en der Klasse 5.6 o                     |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | EN ISO 898-2:2012                                                    | 8      | für Gewindestang                        |                                         |                     |  |  |
| 3а                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unterlegscheibe                                                                                                      | Stahl, galvanisch verz<br>(z.B.: EN ISO 887:200<br>EN ISO 7094:2000) | 06, EI | N ISO 7089:2000, E                      | EN ISO 7093:2000                        | oder                |  |  |
| 3b                                                                                                                                                                                                                                                                                                                                                                                                                                   | Verfüllscheibe                                                                                                       | Stahl, galvanisch verz                                               | inkt,  |                                         |                                         |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | Festigkeitsklasse                                                    |        | Stahlfestigkeit                         | Charakteristische<br>Streckgrenze       | Bruchdehnung        |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                    | Innengewindeankerstange                                                                                              | gemäß                                                                | 5.8    | f <sub>uk</sub> = 500 N/mm <sup>2</sup> | $f_{yk} = 400 \text{ N/mm}^2$           | A <sub>5</sub> > 8% |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | EN ISO 898-1:2013                                                    | 8.8    | f <sub>uk</sub> = 800 N/mm²             | f <sub>vk</sub> = 640 N/mm <sup>2</sup> | A <sub>5</sub> > 8% |  |  |
| Nichtrostender Stahl A2 (Werkstoff 1.4301 / 1.4307 / 1.4311 / 1.4567 oder 1.4541, gemäß EN 10088-1:2014)           Nichtrostender Stahl A4 (Werkstoff 1.4401 / 1.4404 / 1.4571 / 1.4362 oder 1.4578, gemäß EN 10088-1:2014)           Hochkorrosionsbeständiger Stahl (Werkstoff 1.4529 oder 1.4565, gemäß EN 10088-1: 2014)           Charakteristische Stahlfestigkeit         Charakteristische Streckgrenze         Bruchdehnung |                                                                                                                      |                                                                      |        |                                         |                                         |                     |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gewindestange <sup>1)3)</sup>                                                                                        |                                                                      | 50     | f <sub>uk</sub> = 500 N/mm <sup>2</sup> |                                         | A <sub>5</sub> > 8% |  |  |
| '                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gewindestange                                                                                                        | gemäß                                                                |        | f <sub>uk</sub> = 700 N/mm <sup>2</sup> | •                                       | =                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | EN ISO 3506-1:2020                                                   |        |                                         | f <sub>vk</sub> = 600 N/mm <sup>2</sup> | A <sub>5</sub> > 8% |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      |                                                                      | 50     | für Gewindestang                        | 7                                       | <u> </u>            |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sechskantmutter <sup>1)3)</sup>                                                                                      | gemäß                                                                | 70     | für Gewindestang                        |                                         |                     |  |  |
| EN ISO 3506-1:2020 Für Gewindestangen der Klasse 80                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      |                                                                      |        |                                         |                                         |                     |  |  |
| A2: Werkstoff 1.4301 / 1.4307 / 1.4311 / 1.4567 oder 1.4541, EN 10088-1:2014 A4: Werkstoff 1.4401 / 1.4404 / 1.4571 / 1.4362 oder 1.4578, EN 10088-1:2014 HCR: Werkstoff 1.4529 oder 1.4565, EN 10088-1: 2014 (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)                                                                                                                                      |                                                                                                                      |                                                                      |        |                                         |                                         |                     |  |  |
| 3b                                                                                                                                                                                                                                                                                                                                                                                                                                   | Verfüllscheibe                                                                                                       | Nichtrostender Stahl A                                               | 44, H  |                                         |                                         |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | Festigkeitsklasse                                                    |        | Stahlfestigkeit                         | Charakteristische<br>Streckgrenze       | Bruchdehnung        |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                    | Innengewindeankerstange <sup>1)2)</sup>                                                                              | gemäß                                                                | 50     | f <sub>uk</sub> = 500 N/mm²             | $f_{yk} = 210 \text{ N/mm}^2$           | A <sub>5</sub> > 8% |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | EN 100 0500 4 0000                                                   | 70     | f <sub>uk</sub> = 700 N/mm²             | f <sub>yk</sub> = 450 N/mm²             | A <sub>5</sub> > 8% |  |  |
| 2)                                                                                                                                                                                                                                                                                                                                                                                                                                   | Festigkeitsklasse 70 für Gewindesta<br>für IG-M20 nur Festigkeitsklasse 50<br>Festigkeitsklasse 80 nur für nichtrost |                                                                      | ngewi  | ndeankerstange bis                      | IG-M16,                                 |                     |  |  |

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton            |            |
|----------------------------------------------------------------------------|------------|
| Produktbeschreibung Werkstoffe Gewindestangen und Innengewindeankerstangen | Anhang A 4 |



# Betonstahl Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø 28, Ø 32

- Mindestwerte der bezogenen Rippenfläche f<sub>R,min</sub> gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

#### Tabelle A2: Werkstoffe

| Teil | Benennung                                              | Werkstoff                                                                                                                                                             |
|------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beto | onstahl                                                |                                                                                                                                                                       |
| 1    | Betonstahl gemäß<br>EN 1992-1-1:2004+AC:2010, Anhang C | Stäbe und Betonstabstahl vom Ring Klasse B oder C f <sub>yk</sub> und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA f <sub>uk</sub> = f <sub>tk</sub> = k•f <sub>yk</sub> |

CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton

Produktbeschreibung
Werkstoffe Betonstahl

Anhang A 5



#### Spezifizierung des Verwendungszwecks

#### Beanspruchung der Verankerung:

- Statische und guasi-statische Lasten: M8 bis M30, Rebar Ø8 bis Ø32, IG-M6 bis IG-M20.
- Seismische Einwirkung für Anforderungsstufe C1: M8 bis M30, Betonstahl Ø8 bis Ø32.

#### Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A1:2016.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A1:2016.
- Ungerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32, IG-M6 bis IG-M20.
- Gerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32, IG-M6 bis IG-M20.

#### Temperaturbereich:

- I: 40 °C bis +40 °C (max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)
- II: 40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)
- III: 40 °C bis +120 °C (max. Langzeit-Temperatur +72 °C und max. Kurzzeit-Temperatur +120 °C)

#### Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
  - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
  - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
  - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

#### Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

#### Einbau:

- Trockener oder nasser Beton: M8 bis M30. Betonstahl Ø8 bis Ø32. IG-M6 bis IG-M20.
- Wassergefüllte Bohrlöcher (nicht Seewasser): M8 bis M16, Betonstahl Ø8 bis Ø16, IG-M6 bis IG-M10.
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB) oder Pressluftbohren (CD).
- Überkopfmontage erlaubt.
- · Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Der Injektionsmörtel wurde für den Einbau bei einer Mindestbetontemperatur von -10°C bzw. -20°C bewertet, wobei anschließend die Temperatur im Beton nicht mit einer schnellen Geschwindigkeit ansteigen darf, z.B. von der Mindesteinbautemperatur auf 24°C innerhalb von 12 Stunden.

CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton

Verwendungszweck
Spezifikationen

Anhang B 1



| Ankers Bohremenndurchmesser    d <sub>0</sub> [mm] =   10   12   14   18   24   28   32   35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dübelgröße Ankerstangen                                                                                                                        |                         |                                                                       | М                   | 8 M                                          | 10 N                         | <b>/</b> 112 | M16    | M20              | M24                  | M27     | M30   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------|---------------------|----------------------------------------------|------------------------------|--------------|--------|------------------|----------------------|---------|-------|
| ### Bohrernenndurchmesser   # | Außendurchmesser des<br>Ankers                                                                                                                 | d <sub>nom</sub> [m     | d <sub>nom</sub> [mm] =                                               |                     | 3 1                                          | 0                            | 12           | 16     | 20               | 24                   | 27      | 30    |
| Perfective Verankerungstiere   Perfective Verankerungstere   Perfective Verankerungtere (min/max)   Perfective Verankerungstere (min/max)   Perfective Verankerungs   | Bohrernenndurchmesser                                                                                                                          | d <sub>0</sub> [m       | m] =                                                                  | 1                   | 0 1                                          | 2                            | 14           | 18     | 24               | 28                   | 32      | 35    |
| Perfective Verankerungstiere   Perfective Verankerungstere   Perfective Verankerungtere (min/max)   Perfective Verankerungstere (min/max)   Perfective Verankerungs   |                                                                                                                                                | h <sub>ef min</sub> [m  | m] =                                                                  |                     |                                              |                              |              |        |                  |                      | _       | 120   |
| Durchgangsloch im anzuschließenden Bauteil   d <sub>f</sub> [mm] s   9   12   14   18   22   26   30   33   33   33   34   37   37   37   38   38   38   38   38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Effektive Verankerungstiefe                                                                                                                    |                         |                                                                       | <del> </del>        |                                              |                              | 240          | 320    | 400              | 480                  |         | 600   |
| Bürstendurchmesser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Durchgangsloch im<br>anzuschließenden Bauteil                                                                                                  | · ·                     |                                                                       |                     |                                              |                              |              |        |                  |                      |         | 33    |
| Montagedrehmoment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bürstendurchmesser                                                                                                                             | d <sub>b</sub> [m       | m] ≥                                                                  | 1.                  | 2 1                                          | 4                            | 16           | 20     | 26               | 30                   | 34      | 37    |
| Minimaler Achsabstand   Smin [mm]   her + 30 mm ≥ 100 mm   her + 2do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximales                                                                                                                                      | max T [N                | m1 <                                                                  | 1                   | 0 2                                          | 20                           | 40           | 90     | 120              | 160                  | 190     | 200   |
| Minimaler Achsabstand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Montagedrehmoment                                                                                                                              |                         |                                                                       |                     |                                              |                              |              | 00     |                  |                      |         |       |
| Minimaler Randabstand   C <sub>min</sub> [mm]   40   50   60   80   100   120   135   150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mindestbauteildicke                                                                                                                            |                         |                                                                       |                     | + 30 mn                                      | n ≥ 100                      | mm           |        |                  | h <sub>ef</sub> + 20 | do      |       |
| Tabelle B2: Montagekennwerte für Betonstahl  Größe Betonstahl  Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 3  Außendurchmesser des Ankers Ø domm [mm] = 8 10 12 14 16 20 25 28 32  Bohrernenndurchmesser Ø domm [mm] = 12 14 16 18 20 24 32 35 40  Effektive Werankerungstiefe Ø hef.min [mm] = 160 60 70 75 80 90 100 112 12  Windestbauteildicke Ø hmin [mm] = 160 200 240 280 320 400 500 580 644  Bürstendurchmesser Ø domm   14 16 18 20 22 26 34 37 41.  Mindestbauteildicke Ø hmin [mm] Ø 10 12 20 40 100 125 140 160  Minimaler Achsabstand Ø min [mm] Ø 10 50 60 70 80 100 125 140 160  Tabelle B3: Montagekennwerte für Innengewindeankerstangen  Größe Innengewindeankerstangen  Innendurchmesser des Ankers Ø domm   10 12 16 20 24 30  Bohrernenndurchmesser Ø Ankers Ø domm   10 12 14 18 22 28 35  Effektive Verankerungstiefe Ø hef.min [mm] Ø 10 12 14 18 22 28 35  Effektive Verankerungstiefe Ø hef.min [mm] Ø 10 10 20 40 60 100  Durchgangsloch im Ø domm   10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 10 20 40 60 100  Einschraublänge (min/max) Ø li [c [mm] Ø 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                        | Minimaler Achsabstand                                                                                                                          |                         |                                                                       |                     | 0 5                                          | 0                            | 60           | 80     | 100              | 120                  | 135     | 150   |
| Größe Betonstahl  Außendurchmesser des Ankers   do   mm   =   12   14   16   18   20   20   25   28   32   35   40   20   20   20   20   20   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimaler Randabstand                                                                                                                          | c <sub>min</sub> [      | mm]                                                                   | 4                   | 0 5                                          | 0                            | 60           | 80     | 100              | 120                  | 135     | 150   |
| Außendurchmesser des Ankers  Bohrernenndurchmesser  d₀ [mm] = 12 14 16 18 20 24 32 35 40 40 40 10 11 12 12 14 16 18 20 24 32 35 40 40 40 40 50 50 580 640 40 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                | nnwerte fi              |                                                                       |                     |                                              | ~ 40                         | ~ 4          | 4 0 40 | ~ 00             | ~ •                  | F 000   |       |
| Ankers   Qnom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                |                         | <u> </u>                                                              | 98                  | Ø 10                                         | Ø 12                         | Ø 1          | 4 Ø 16 | Ø 20             | Ø 2                  | 5 0 28  | s Ø 3 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ankers                                                                                                                                         |                         |                                                                       |                     |                                              |                              |              |        |                  |                      |         | 32    |
| Verankerungstiefe         h <sub>ef,max</sub> [mm] = 160   200   240   280   320   400   500   580   640   680   640   680   640   680   640   680   640   680   640   680   640   680   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   64                       | Bohrernenndurchmesser                                                                                                                          |                         |                                                                       |                     |                                              |                              |              |        |                  |                      |         | 40    |
| Bürstendurchmesser $d_b \ [mm] \ge 14$ 16 18 20 22 26 34 37 41, Mindestbauteildicke $h_{min} \ [mm]$ $h_{ef} + 30 \ mm$ $≥ 100 \ mm$ $h_{ef} + 2d_0$ Minimaler Achsabstand $s_{min} \ [mm]$ 40 50 60 70 80 100 125 140 160 Minimaler Randabstand $c_{min} \ [mm]$ 40 50 60 70 80 100 125 140 160 Tabelle B3: Montagekennwerte für Innengewindeankerstangen  Größe Innengewindeankerstangen IG-M6 IG-M8 IG-M10 IG-M12 IG-M16 IG-M2 Innendurchmesser des Ankers $d_2 \ [mm] = 6$ 8 10 12 16 20 Außendurchmesser des Ankers $d_0 \ [mm] = 10$ 12 16 20 24 30 Bohrernenndurchmesser $d_0 \ [mm] = 12$ 14 18 22 28 35 $d_0 \ [mm] = 12$ 14 18 22 28 35 $d_0 \ [mm] = 12$ 14 18 22 28 35 $d_0 \ [mm] = 12$ 14 18 22 28 35 $d_0 \ [mm] = 12$ 14 18 22 28 35 $d_0 \ [mm] = 12$ 14 18 22 28 35 $d_0 \ [mm] = 12$ 14 18 22 28 35 $d_0 \ [mm] = 12$ 16 10 10 20 40 400 480 600 Durchgangsloch im $d_0 \ [mm] = 12$ 10 10 20 40 60 100 Einschraublänge (min/max) $d_0 \ [mm] = 12$ 10 10 20 40 60 100 Einschraublänge (min/max) $d_0 \ [mm] = 12$ 10 10 20 40 60 100 Einschraublänge (min/max) $d_0 \ [mm] = 12$ 10 10 20 40 60 100 100 Einschraublänge (min/max) $d_0 \ [mm] = 12$ 10 10 20 40 60 100 100 Einschraublänge (min/max) $d_0 \ [mm] = 12$ 10 10 20 40 60 100 100 Einschraublänge (min/max) $d_0 \ [mm] = 12$ 10 10 10 20 40 60 100 100 Einschraublänge (min/max) $d_0 \ [mm] = 12$ 10 10 10 20 40 60 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Effektive                                                                                                                                      |                         |                                                                       |                     |                                              | 70                           |              |        | 90               | 100                  | 112     | 128   |
| Mindestbauteildicke $h_{min}$ [mm] $h_{ef}$ + 30 mm ≥ 100 mm $h_{ef}$ + 2do           Minimaler Achsabstand $s_{min}$ [mm]         40         50         60         70         80         100         125         140         160           Minimaler Randabstand $c_{min}$ [mm]         40         50         60         70         80         100         125         140         160           Tabelle B3: Montagekennwerte für Innengewindeankerstangen           Größe Innengewindeankerstangen         IG-M6         IG-M8         IG-M10         IG-M12         IG-M16         IG-M2           Innendurchmesser des Ankers         d2 [mm] =         6         8         10         12         16         20           Außendurchmesser des Ankers (1)         dnom [mm] =         10         12         16         20         24         30           Bohrernenndurchmesser         d0 [mm] =         12         14         18         22         28         35           Effektive Verankerungstiefe         hef,min [mm] =         60         70         80         90         96         120           Durchgangsloch im arzuschließenden Bauteil         df [mm] =         7         9         12         14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>-</u>                                                                                                                                       |                         | _                                                                     |                     |                                              | 240                          | 280          | 320    | 400              | 500                  | 580     | 640   |
| Minimaler Achsabstand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bürstendurchmesser                                                                                                                             | d <sub>b</sub> [mm] i   |                                                                       |                     |                                              | 18                           | 20           | 22 26  |                  | 34                   | 37      | 41,   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mindestbauteildicke                                                                                                                            |                         | ا ا                                                                   |                     |                                              |                              |              |        |                  |                      |         |       |
| Tabelle B3: Montagekennwerte für Innengewindeankerstangen           Größe Innengewindeankerstangen         IG-M6         IG-M8         IG-M10         IG-M12         IG-M16         IG-M2           Innendurchmesser des Ankers $d_2$ [mm] = 6         8         10         12         16         20           Außendurchmesser des Ankers (1) $d_{nom}$ [mm] = 10         12         16         20         24         30           Bohrernenndurchmesser $d_0$ [mm] = 12         14         18         22         28         35           Effektive Verankerungstiefe $h_{ef,min}$ [mm] = 60         70         80         90         96         120           Durchgangsloch im anzuschließenden Bauteil $d_f$ [mm] = 7         9         12         14         18         22           Maximales Montagedrehmoment $max$ $T_{inst}$ [Nm] ≤ 10         10         20         40         60         100           Einschraublänge (min/max) $I_{IG}$ [mm] = 8/20         8/20         10/25         12/30         16/32         20/40           Mindestbauteildicke $h_{min}$ [mm]         50         60         80         100         120         150           Minimaler Achsabstand $c_{min}$ [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimaler Achsabstand                                                                                                                          |                         |                                                                       | 40                  | 50                                           | 60                           | 70           | 80     | 100              | 125                  | 140     | 160   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimaler Randabstand                                                                                                                          | c <sub>min</sub> [mm    | ] 4                                                                   | 40                  | 50                                           | 60                           | 70           | 80     | 100              | 125                  | 140     | 160   |
| $\begin{array}{ c c c c c c }\hline \text{Innendurchmesser des Ankers} & d_2  [\text{mm}] = & 6 & 8 & 10 & 12 & 16 & 20 \\ \hline \text{Außendurchmesser des Ankers}^{(1)} & d_{\text{nom}}  [\text{mm}] = & 10 & 12 & 16 & 20 & 24 & 30 \\ \hline \text{Bohrernenndurchmesser} & d_0  [\text{mm}] = & 12 & 14 & 18 & 22 & 28 & 35 \\ \hline \text{Effektive Verankerungstiefe} & & h_{\text{ef,min}}  [\text{mm}] = & 60 & 70 & 80 & 90 & 96 & 120 \\ \hline & h_{\text{ef,max}}  [\text{mm}] = & 200 & 240 & 320 & 400 & 480 & 600 \\ \hline \text{Durchgangsloch im} & & d_f  [\text{mm}] = & 7 & 9 & 12 & 14 & 18 & 22 \\ \hline \text{Maximales Montagedrehmoment} & & \max T_{\text{inst}}  [\text{Nm}] \leq & 10 & 10 & 20 & 40 & 60 & 100 \\ \hline \text{Einschraublänge (min/max)} & & I_{\text{IG}}  [\text{mm}] = & 8/20 & 8/20 & 10/25 & 12/30 & 16/32 & 20/40 \\ \hline \text{Minidestbauteildicke} & & h_{\text{min}}  [\text{mm}] & & h_{\text{ef}} + 30  \text{mm} \\ & \geq 100  \text{mm} & & & h_{\text{ef}} + 2d_0 \\ \hline \text{Minimaler Achsabstand} & & s_{\text{min}}  [\text{mm}] & 50 & 60 & 80 & 100 & 120 & 150 \\ \hline \text{Minimaler Randabstand} & & c_{\text{min}}  [\text{mm}] & 50 & 60 & 80 & 100 & 120 & 150 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tabelle B3: Montageke                                                                                                                          | nnwerte fü              | ir In                                                                 | nen                 | gewin                                        | deank                        | ersta        | angen  |                  |                      |         |       |
| $\begin{array}{ c c c c c c }\hline \text{Innendurchmesser des Ankers} & d_2  [\text{mm}] = & 6 & 8 & 10 & 12 & 16 & 20 \\ \hline \text{Außendurchmesser des Ankers}^{(1)} & d_{\text{nom}}  [\text{mm}] = & 10 & 12 & 16 & 20 & 24 & 30 \\ \hline \text{Bohrernenndurchmesser} & d_0  [\text{mm}] = & 12 & 14 & 18 & 22 & 28 & 35 \\ \hline \text{Effektive Verankerungstiefe} & & h_{\text{ef,min}}  [\text{mm}] = & 60 & 70 & 80 & 90 & 96 & 120 \\ \hline & h_{\text{ef,max}}  [\text{mm}] = & 200 & 240 & 320 & 400 & 480 & 600 \\ \hline \text{Durchgangsloch im} & & d_f  [\text{mm}] = & 7 & 9 & 12 & 14 & 18 & 22 \\ \hline \text{Maximales Montagedrehmoment} & & \max T_{\text{inst}}  [\text{Nm}] \leq & 10 & 10 & 20 & 40 & 60 & 100 \\ \hline \text{Einschraublänge (min/max)} & & I_{\text{IG}}  [\text{mm}] = & 8/20 & 8/20 & 10/25 & 12/30 & 16/32 & 20/40 \\ \hline \text{Minidestbauteildicke} & & h_{\text{min}}  [\text{mm}] & & h_{\text{ef}} + 30  \text{mm} \\ & \geq 100  \text{mm} & & & h_{\text{ef}} + 2d_0 \\ \hline \text{Minimaler Achsabstand} & & s_{\text{min}}  [\text{mm}] & 50 & 60 & 80 & 100 & 120 & 150 \\ \hline \text{Minimaler Randabstand} & & c_{\text{min}}  [\text{mm}] & 50 & 60 & 80 & 100 & 120 & 150 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Größe Innengewindeankerst                                                                                                                      | angen                   |                                                                       |                     | IG-M6                                        | IG-                          | M8           | IG-M10 | IG-M             | 12 10                | 3-M16   | IG-M2 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Innendurchmesser des Ankers                                                                                                                    |                         |                                                                       | n] =                | 6                                            | 8                            | 3            | 10     | 12               |                      | 16      | 20    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Außendurchmesser des Anker                                                                                                                     | s 1) d <sub>nor</sub>   | n [mn                                                                 | n] =                | 10                                           | 1                            | 2            | 16     | 20               |                      | 24      | 30    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                         |                                                                       |                     | 12                                           | 1                            | 4            | 18     | 22               |                      | 28      | 35    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bohrernenndurchmesser                                                                                                                          | h <sub>ef.mi</sub>      | n [mn                                                                 | n] =                | 60                                           | 7                            | 0            | 80     | 90               |                      | 96      | 120   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                         | , [mn                                                                 | n] =                | 200                                          | 24                           | 10           | 320    | 400              |                      | 480     | 600   |
| Einschraublänge (min/max) $I_{IG}$ [mm] =       8/20       8/20       10/25       12/30       16/32       20/40         Mindestbauteildicke $h_{min}$ [mm] $h_{ef}$ + 30 mm ≥ 100 mm $h_{ef}$ + 2d₀         Minimaler Achsabstand $s_{min}$ [mm]       50       60       80       100       120       150         Minimaler Randabstand $c_{min}$ [mm]       50       60       80       100       120       150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                | h <sub>ef,ma</sub>      |                                                                       |                     |                                              |                              | ,            | 12     | 14               |                      | 18      | 22    |
| Mindestbauteildicke $h_{min}$ [mm] $h_{ef} + 30 \text{ mm}$ $≥ 100 \text{ mm}$ $h_{ef} + 2d_0$ Minimaler Achsabstand $s_{min}$ [mm]         50         60         80         100         120         150           Minimaler Randabstand $c_{min}$ [mm]         50         60         80         100         120         150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Effektive Verankerungstiefe  Durchgangsloch im anzuschließenden Bauteil                                                                        | C                       | l <sub>f</sub> [mn                                                    |                     | 7                                            | ,                            |              |        |                  |                      | 60      | 100   |
| Minimaler Achsabstand $s_{min}$ [mm]         ≥ 100 mm $s_{min}$ [mm]         ≥ 100 mm $s_{min}$ [mm]         100         120         150           Minimaler Randabstand $c_{min}$ [mm]         50         60         80         100         120         150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Effektive Verankerungstiefe<br>Durchgangsloch im<br>anzuschließenden Bauteil                                                                   | C                       | l <sub>f</sub> [mn                                                    |                     |                                              |                              |              | 20     | 40               |                      | 0 16/32 |       |
| Minimaler Randabstand         c <sub>min</sub> [mm]         50         60         80         100         120         150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Effektive Verankerungstiefe<br>Durchgangsloch im<br>anzuschließenden Bauteil                                                                   | ent max T <sub>in</sub> | l <sub>f</sub> [mn<br><sub>st</sub> [Nn                               | n] ≤                | 10                                           | 1                            | 0            |        | -                | 0                    | 16/32   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Effektive Verankerungstiefe<br>Durchgangsloch im<br>anzuschließenden Bauteil<br>Maximales Montagedrehmome                                      | ent max T <sub>in</sub> | I <sub>f</sub> [mn<br><sub>st</sub> [Nn<br>3 [mn                      | n] ≤<br>n] =        | 10<br>8/20<br>h <sub>ef</sub> +              | 8/2<br>- 30 mm               | 0            |        | 12/3             |                      |         |       |
| 1) Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Effektive Verankerungstiefe<br>Durchgangsloch im<br>anzuschließenden Bauteil<br>Maximales Montagedrehmome<br>Einschraublänge (min/max)         | ent max T <sub>in</sub> | l <sub>f</sub> [mn<br><sub>st</sub> [Nn<br>∋ [mn<br><sub>min</sub> [n | n] ≤<br>n] =<br>nm] | 10<br>8/20<br>h <sub>ef</sub> +<br>≥ 1       | 1<br>8/2<br>- 30 mm          | 0<br>20<br>1 | 10/25  | 12/3             | n <sub>ef</sub> + 20 | lo      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Effektive Verankerungstiefe Durchgangsloch im anzuschließenden Bauteil Maximales Montagedrehmome Einschraublänge (min/max) Mindestbauteildicke | ent max T <sub>in</sub> | I <sub>f</sub> [mn<br>st [Nn<br>G [mn<br>min [n                       | n] ≤<br>n] =<br>nm] | 10<br>8/20<br>h <sub>ef</sub> +<br>≥ 1<br>50 | 1<br>8/2<br>- 30 mm<br>00 mm | 0<br>20<br>1 | 10/25  | 12/3<br>I<br>100 | n <sub>ef</sub> + 20 | 120     | 150   |



#### Tabelle B4: Parameter für Reinigungs- und Setzzubehör

| 7                 | CECTORESCOCKEGA |                                   |                                 |                          | ************ | , i i i i i i i i i i i i i i i i i i i   |                                                                 |                   |                   |       |
|-------------------|-----------------|-----------------------------------|---------------------------------|--------------------------|--------------|-------------------------------------------|-----------------------------------------------------------------|-------------------|-------------------|-------|
| Anker-<br>stangen | Betonstahl      | Innen-<br>gewinde-<br>ankerstange | d₀<br>Bohrer - Ø<br>HD, HDB, CA | d <sub>i</sub><br>Bürste |              | d <sub>b,min</sub><br>min.<br>Bürsten - Ø | Verfüll-<br>stutzen Installationsricl<br>Anwendun<br>Verfüllstu |                   | wendung v         | von   |
| [mm]              | [mm]            | [mm]                              | [mm]                            |                          | [mm]         | [mm]                                      |                                                                 | 1                 |                   | 1     |
| M8                |                 |                                   | 10                              | RBS10                    | 12           | 10,5                                      |                                                                 | •                 |                   |       |
| M10               | 8               | IG-M6                             | 12                              | RBS12                    | 14           | 12,5                                      | Koii                                                            | a Vorfülletu      | tzon notwo        | andia |
| M12               | 10              | IG-M8                             | 14                              | RBS14                    | 16           | 14,5                                      | Keii                                                            | n Verfüllstu      | itzen notwe       | endig |
|                   | 12              |                                   | 16                              | RBS16                    | 18           | 16,5                                      |                                                                 |                   |                   |       |
| M16               | 14              | IG-M10                            | 18                              | RBS18                    | 20           | 18,5                                      | VS18                                                            |                   |                   |       |
|                   | 16              |                                   | 20                              | RBS20                    |              | 20,5                                      | VS20                                                            |                   |                   |       |
| M20               | 20              | IG-M12                            | 24                              | RBS24                    | 26           | 24,5                                      | VS24                                                            | h . \             | h ( >             |       |
| M24               |                 | IG-M16                            | 28                              | RBS28                    | 30           | 28,5                                      | VS28                                                            | h <sub>ef</sub> > | h <sub>ef</sub> > | all   |
| M27               | 25              |                                   | 32                              | RBS32                    | 34           | 32,5                                      | VS32                                                            | 250 mm            | 250 mm            |       |
| M30               | 28              | IG-M20                            | 35                              | RBS35                    | 37           | 35,5                                      | VS35                                                            |                   |                   |       |
|                   | 32              |                                   | 40                              | RBS40                    | 41,5         | 40,5                                      | VS40                                                            |                   |                   |       |



MAC - Handpumpe (Volumen 750 ml)

Bohrerdurchmesser ( $d_0$ ): 10 mm bis 20 mm Bohrlochtiefe ( $h_0$ ): < 10  $d_{nom}$ Nur im ungerissenen Beton



CAC - Empfohlene Druckluftpistole (min 6 bar)

Bohrerdurchmesser (d<sub>0</sub>): alle Durchmesser



Verfüllstutzen VS

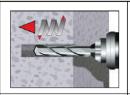
Bohrerdurchmesser (d<sub>0</sub>): 18 mm bis 40 mm



Stahlbürste RBS

Bohrerdurchmesser (d<sub>0</sub>): alle Durchmesser

Verwendungszweck


Reinigungs- und Installationszubehör

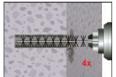
Anhang B 3



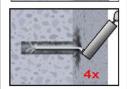
#### Setzanweisung

#### Bohrloch erstellen




1. Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe mit Hammerbohrer (HD), Hohlbohrer (HDB) oder Druckluftbohrer (CD) erstellen. Der Hohlbohrer (HDB) ist nur in Verbindung mit einem geeigneten Staubsauger zu verwenden. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

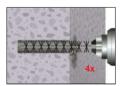

MAC: Reinigung für Bohrerdurchmesser  $d_0 \le 20$ mm und Bohrlochtiefe  $h_0 \le 10d_{nom}$  (nur ungerissenere Beton!); alle Bohrarten



2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit einer Handpumpe<sup>1)</sup> (Anhang B 3) ausblasen.



2b. Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste > d<sub>b,min</sub> (Tabelle B4) minimum 4x mit Drehbewegungen auszubürsten. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.




- 2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit einer Handpumpe<sup>1)</sup> (Anhang B 3) ausblasen.
- <sup>1)</sup> Bohrlöcher mit Durchmesser zwischen 14 mm und 20 mm und bis zu einer Setztiefe von 10d<sub>nom</sub> dürfen auch in gerissenem Beton mit der Handpumpe ausgeblasen werden.

#### CAC: Reinigung für alle Bohrlochdurchmesser in gerissenem und ungerissenem Beton; alle Bohrarten



2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit Druckluft (min. 6 bar) (Anhang B 3) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.



2b. Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste
 > d<sub>b,min</sub> (Tabelle B4) minimum 4x mit Drehbewegungen auszubürsten.
 Bei tiefen Bohrlöchern geeignete Bürstenverlängerung benutzen.



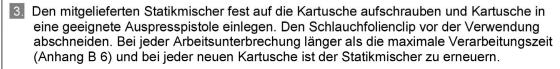
2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit Druckluft (min. 6 bar) (Anhang B 3) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

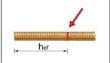
Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

#### CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton

#### Verwendungszweck

Setzanweisung

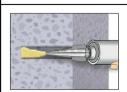

Anhang B 4


**751581 21** 8 06 01-37/21

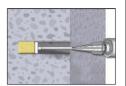


#### Setzanweisung (Fortsetzung)

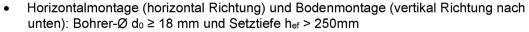




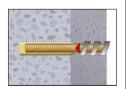




4. Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.



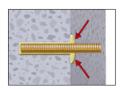

5. Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher den Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe. Bei Schlauchfoliengebinden sind min. 6 volle Hübe zu verwerfen.




6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden. Die temperaturrelevanten Verarbeitungszeiten (Anhang B 6) sind zu beachten.



7. Verfüllstutzen und Mischerverlängerung sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:








8. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.

Die Ankerstange muss schmutz-, fett-, und ölfrei sein.



9 Nach der Installation des Ankers muss der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. Holzkeile).



10. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Anhang B 6).



11. Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Drehmoment (Tabelle B1 oder B3) montiert werden. Die Mutter muss mit einem kalibriertem Drehmomentschlüssel festgezogen werden. Optional kann der Ringspalt zwischen Ankerstange und Anbauteil mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe ersetzen und Mischerreduzierung auf den Mischer stecken. Der Ringspalt ist verfüllt, wenn Mörtel austritt.

#### CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton

Verwendungszweck Setzanweisung (Fortsetzung) Anhang B 5

**751581 21** 8 06 01-37/21



## Tabelle B5: Maximale Verarbeitungszeiten und minimale Aushärtezeiten ResiFIX VYSF

| Beton Temperatur |         | eratur  | Verarbeitungszeit    | Mindest-Aushärtezeit<br>in trockenem Beton <sup>1)</sup> |  |  |  |
|------------------|---------|---------|----------------------|----------------------------------------------------------|--|--|--|
| -10 °C           | bis     | -6°C    | 90 min <sup>2)</sup> | 24 h <sup>2)</sup>                                       |  |  |  |
| -5 °C            | bis     | -1°C    | 90 min               | 14 h                                                     |  |  |  |
| 0 °C             | bis     | +4°C    | 45 min               | 7 h                                                      |  |  |  |
| +5 °C            | bis     | +9°C    | 25 min               | 2 h                                                      |  |  |  |
| + 10 °C          | bis     | +19°C   | 15 min               | 80 min                                                   |  |  |  |
| + 20 °C          | bis     | +29°C   | 6 min                | 45 min                                                   |  |  |  |
| + 30 °C          | bis     | +34°C   | 4 min                | 25 min                                                   |  |  |  |
| + 35 °C          | bis     | +39°C   | 2 min                | 20 min                                                   |  |  |  |
|                  | + 40 °C |         | 1,5 min              | 15 min                                                   |  |  |  |
| Kartuso          | hentem  | peratur | +5°C bis +40°C       |                                                          |  |  |  |

<sup>1)</sup> Die Aushärtezeiten in feuchtem Beton sind zu verdoppeln.

Tabelle B6: Maximale Verarbeitungszeiten und minimale Aushärtezeiten ResiFIX VYSF Cool

| Betor   | n Tempe | eratur  | Verarbeitungszeit | Mindest-Aushärtezeit<br>in trockenem Beton <sup>1)</sup> |
|---------|---------|---------|-------------------|----------------------------------------------------------|
| -20 °C  | bis     | -16°C   | 75 min            | 24 h                                                     |
| -15 °C  | bis     | -11°C   | 55 min            | 16 h                                                     |
| -10 °C  | bis     | -6°C    | 35 min            | 10 h                                                     |
| -5 °C   | bis     | -1°C    | 20 min            | 5 h                                                      |
| 0 °C    | bis     | +4°C    | 10 min            | 2,5 h                                                    |
| +5 °C   | bis     | +9°C    | 6 min             | 80 Min                                                   |
| +       | 10 °C   |         | 6 min             | 60 Min                                                   |
| Kartuso | hentem  | peratur | -20°C bis         | +10°C                                                    |

<sup>1)</sup> Die Aushärtezeiten in feuchtem Beton sind zu verdoppeln.

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton |            |
|-----------------------------------------------------------------|------------|
| Verwendungszweck                                                | Anhang B 6 |
| Aushärtezeit                                                    |            |
|                                                                 |            |

<sup>&</sup>lt;sup>2)</sup> Die Kartuschentemperatur muss min. +15°C betragen.



1,56

1,33

| Gr       | öße Gewindestangen                               |                      |                  | M8      | M10     | M12  | M16   | M20 | M24 | M27  | M30  |
|----------|--------------------------------------------------|----------------------|------------------|---------|---------|------|-------|-----|-----|------|------|
| Sp       | annungsquerschnitt                               | A <sub>s</sub>       | [mm²]            | 36,6    | 58      | 84,3 | 157   | 245 | 353 | 459  | 561  |
| Ch       | arakteristische Zugtragfähigkeit, Stahlversagei  | n <sup>1)</sup>      |                  |         |         |      |       |     |     |      |      |
| Sta      | ahl, Festigkeitsklasse 4.6 und 4.8               | N <sub>Rk,s</sub>    | [kN]             | 15 (13) | 23 (21) | 34   | 63    | 98  | 141 | 184  | 224  |
| Sta      | ahl, Festigkeitsklasse 5.6 und 5.8               | N <sub>Rk,s</sub>    | [kN]             | 18 (17) | 29 (27) | 42   | 78    | 122 | 176 | 230  | 280  |
| Sta      | ahl, Festigkeitsklasse 8.8                       | N <sub>Rk,s</sub>    | [kN]             | 29 (27) | 46 (43) | 67   | 125   | 196 | 282 | 368  | 449  |
| Nic      | chtrostender Stahl A2, A4 und HCR, Klasse 50     | N <sub>Rk,s</sub>    | [kN]             | 18      | 29      | 42   | 79    | 123 | 177 | 230  | 281  |
| Nic      | chtrostender Stahl A2, A4 und HCR, Klasse 70     | N <sub>Rk,s</sub>    | [kN]             | 26      | 41      | 59   | 110   | 171 | 247 | _3)  | _3)  |
| Nic      | chtrostender Stahl A4 und HCR, Klasse 80         | N <sub>Rk,s</sub>    | [kN]             | 29      | 46      | 67   | 126   | 196 | 282 | _3)  | _3)  |
| Ch       | arakteristische Zugtragfähigkeit, Teilsicherheit |                      | rt <sup>2)</sup> |         |         |      |       |     |     |      |      |
| Sta      | ahl, Festigkeitsklasse 4.6 und 5.6               | $\gamma_{Ms,N}$      | [-]              |         |         |      | 2,0   |     |     |      |      |
| Sta      | ahl, Festigkeitsklasse 4.8, 5.8 und 8.8          | $\gamma_{Ms,N}$      | [-]              |         |         |      | 1,5   |     |     |      |      |
| Nic      | chtrostender Stahl A2, A4 und HCR, Klasse 50     | $\gamma_{Ms,N}$      | [-]              |         |         |      | 2,86  | 5   |     |      |      |
| Nic      | chtrostender Stahl A2, A4 und HCR, Klasse 70     | $\gamma_{Ms,N}$      | [-]              |         |         |      | 1,87  | •   |     |      |      |
| Nic      | chtrostender Stahl A4 und HCR, Klasse 80         | $\gamma_{Ms,N}$      | [-]              |         |         |      | 1,6   |     |     |      |      |
| Ch       | arakteristische Quertragfähigkeit, Stahlversage  | en ¹)                |                  |         |         |      |       |     |     |      |      |
| _        | Stahl, Festigkeitsklasse 4.6 und 4.8             | V <sup>0</sup> Rk,s  | [kN]             | 9 (8)   | 14 (13) | 20   | 38    | 59  | 85  | 110  | 135  |
| ebelarm  | Stahl, Festigkeitsklasse 5.6 und 5.8             | V <sup>™</sup> Rk,s  | [kN]             | 11 (10) | 17 (16) | 25   | 47    | 74  | 106 | 138  | 168  |
| epe      | Stahl, Festigkeitsklasse 8.8                     | $V^0_{Rk,s}$         | [kN]             | 15 (13) | 23 (21) | 34   | 63    | 98  | 141 | 184  | 224  |
| e<br>T   | Nichtrostender Stahl A2, A4 und HCR, Klasse 50   | $ V^{\circ}_{Rk,s} $ | [kN]             | 9       | 15      | 21   | 39    | 61  | 88  | 115  | 140  |
| Ohne     | Nichtrostender Stahl A2, A4 und HCR, Klasse 70   | $ V^{\circ}_{Rk,s} $ | [kN]             | 13      | 20      | 30   | 55    | 86  | 124 | _3)  | _3)  |
| _        | Nichtrostender Stahl A4 und HCR, Klasse 80       | $ V^{\circ}_{Rk,s} $ | [kN]             | 15      | 23      | 34   | 63    | 98  | 141 | _3)  | _3)  |
|          | Stahl, Festigkeitsklasse 4.6 und 4.8             | M⁰ <sub>Rk,s</sub>   | [Nm]             | 15 (13) | 30 (27) | 52   | 133   | 260 | 449 | 666  | 900  |
| arm      | Stahl, Festigkeitsklasse 5.6 und 5.8             | M <sup>0</sup> Rk,s  | [Nm]             | 19 (16) | 37 (33) | 65   | 166   | 324 | 560 | 833  | 1123 |
| Hebelarm | Stahl, Festigkeitsklasse 8.8                     | M <sup>0</sup> Rk,s  | [Nm]             | 30 (26) | 60 (53) | 105  | 266   | 519 | 896 | 1333 | 1797 |
|          | Nichtrostender Stahl A2, A4 und HCR, Klasse 50   | M <sup>0</sup> Rk,s  | [Nm]             | 19      | 37      | 66   | 167   | 325 | 561 | 832  | 1125 |
| ΜĬ       | Nichtrostender Stahl A2, A4 und HCR, Klasse 70   | M <sup>0</sup> Rk,s  | [Nm]             | 26      | 52      | 92   | 232   | 454 | 784 | _3)  | _3)  |
|          | Nichtrostender Stahl A4 und HCR, Klasse 80       | M <sup>0</sup> Rk,s  | [Nm]             | 30      | 59      | 105  | 266   | 519 | 896 | _3)  | _3)  |
|          | arakteristische Quertragfähigkeit, Teilsicherhe  |                      |                  |         |         |      |       |     |     |      |      |
|          | ahl, Festigkeitsklasse 4.6 und 5.6               | γ <sub>Ms,V</sub>    | [-]              |         |         |      | 1,67  |     |     |      |      |
|          | ahl, Festigkeitsklasse 4.8, 5.8 und 8.8          | $\gamma_{Ms,V}$      | [-]              |         |         |      | 1,25  | 5   |     |      |      |
| Nic      | chtrostender Stahl A2, A4 und HCR, Klasse 50     | $\gamma_{Ms,V}$      | [-]              |         |         |      | 2,38  | 3   |     |      |      |
|          |                                                  |                      |                  |         |         |      | 4 = 0 |     |     |      |      |

<sup>&</sup>lt;sup>1)</sup> Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A<sub>s</sub>. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A<sub>s</sub> für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

[-]

[-]

 $\gamma_{Ms,V}$ 

γMs,V

Nichtrostender Stahl A2, A4 und HCR, Klasse 70

Nichtrostender Stahl A4 und HCR, Klasse 80

<sup>3)</sup> Dübelvariante nicht in ETA enthalten

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                                               |            |
|---------------------------------------------------------------------------------------------------------------|------------|
| Leistungen<br>Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquertragfähigkeit von Gewindestangen | Anhang C 1 |

<sup>&</sup>lt;sup>2)</sup> Sofern andere nationalen Regelungen fehlen



| Tabelle C2:      | Charakteristisc<br>Belastungsarte |                    | für Beto | onausbruch und Spalten für alle                        |
|------------------|-----------------------------------|--------------------|----------|--------------------------------------------------------|
| Dübelgröße       |                                   |                    |          | Alle Dübelarten und -größen                            |
| Betonausbruch    |                                   |                    |          |                                                        |
| ungerissener Be  | ton                               | k <sub>ucr,N</sub> | [-]      | 11,0                                                   |
| gerissener Betor | ı                                 | k <sub>cr,N</sub>  | [-]      | 7,7                                                    |
| Randabstand      |                                   | c <sub>cr,N</sub>  | [mm]     | 1,5 h <sub>ef</sub>                                    |
| Achsabstand      |                                   | s <sub>cr,N</sub>  | [mm]     | 2 c <sub>cr,N</sub>                                    |
| Spalten          |                                   | •                  |          |                                                        |
|                  | h/h <sub>ef</sub> ≥ 2,0           |                    |          | 1,0 h <sub>ef</sub>                                    |
| Randabstand      | $2.0 > h/h_{ef} > 1.3$            | C <sub>cr,sp</sub> | [mm]     | $2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right)$ |
|                  | h/h <sub>ef</sub> ≤ 1,3           |                    |          | 2,4 h <sub>ef</sub>                                    |
| Achsabstand      | •                                 | s <sub>cr,sp</sub> | [mm]     | 2 c <sub>cr,sp</sub>                                   |

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                                         |            |
|---------------------------------------------------------------------------------------------------------|------------|
| Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung | Anhang C 2 |



| Dübelgröße Gewindes                       | tangen                                 |                               |             | M8       | M10    | M12  | M16     | M20                  | M24     | M27     | M30   |  |
|-------------------------------------------|----------------------------------------|-------------------------------|-------------|----------|--------|------|---------|----------------------|---------|---------|-------|--|
| Stahlversagen Charakteristische Zugtra    | anfähinkeit                            | No                            | [kN]        |          | Α      | •f.( | oder si | ehe Ta               | helle C | 1)      |       |  |
| Teilsicherheitsbeiwert                    | agranigkeit                            | N <sub>Rk,s</sub>             | [-]         |          | , 4    |      |         | abelle C             |         | ''      |       |  |
|                                           | n durch Herausziehen u                 | <sup>γ</sup> Ms,N<br>nd Betoι |             | <u> </u> |        |      | iche ie | abelle C             | , ı     |         |       |  |
|                                           | ındtragfähigkeit im ungeris            |                               |             |          |        |      |         |                      |         |         |       |  |
| _ I: 40°C/24°C                            |                                        |                               |             | 10       | 12     | 12   | 12      | 12                   | 11      | 10      | 9     |  |
| A 11: 80°(750°( 1                         | rockener und feuchter<br>Beton         |                               |             | 7,5      | 9      | 9    | 9       | 9                    | 8,5     | 7,5     | 6,5   |  |
| पुष्ट   III: 120°C/72°C                   |                                        | τ                             | [N/mm²]     | 5,5      | 6,5    | 6,5  | 6,5     | 6,5                  | 6,5     | 5,5     | 5,0   |  |
| I: 40°C/24°C                              |                                        | <sup>τ</sup> Rk,ucr           | [N/mm²]     | 7,5      | 8,5    | 8,5  | 8,5     | Keine Leistung bewer |         |         |       |  |
| B II: 80°C/50°C v                         | wassergefülltes Bohrloch               |                               |             | 5,5      | 6,5    | 6,5  | 6,5     |                      |         |         |       |  |
| III: 120°C/72°C                           |                                        |                               |             | 4,0      | 5,0    | 5,0  | 5,0     |                      |         |         |       |  |
| Charakteristische Verbu                   | ındtragfähigkeit im gerisse            | nen Beto                      | on C20/25   |          |        |      |         |                      |         |         |       |  |
| ے ا: 40°C/24°C                            |                                        |                               |             | 4,0      | 5,0    | 5,5  | 5,5     | 5,5                  | 5,5     | 6,5     | 6,5   |  |
| 4) II: 8II*[:/5II*[: I                    | rockener und feuchter<br>Beton         |                               |             | 2,5      | 3,5    | 4,0  | 4,0     | 4,0                  | 4,0     | 4,5     | 4,5   |  |
| 일 III: 120°C/72°C                         |                                        | _                             | [N1/2]      | 2,0      | 2,5    | 3,0  | 3,0     | 3,0                  | 3,0     | 3,5     | 3,5   |  |
| E 40°C/24°C                               |                                        | <sup>τ</sup> Rk,cr            | [N/mm²]     | 4,0      | 4,0    | 5,5  | 5,5     |                      |         |         |       |  |
| ही   II: 80°C/50°C   v                    | wassergefülltes Bohrloch               |                               |             | 2,5      | 3,0    | 4,0  | 4,0     | Keine                | Leistu  | ıng bev | werte |  |
| III: 120°C/72°C                           |                                        |                               |             | 2,0      | 2,5    | 3,0  | 3,0     | 1                    |         |         |       |  |
| <br>Reduktionsfaktor ψ <sup>0</sup> sus i | im gerissenen und ungeris              | ssenen B                      | Seton C20/2 | 25       |        |      |         |                      |         |         |       |  |
| 느 I: 40°C/24°C                            |                                        |                               |             |          |        |      | 0,      | 73                   |         |         |       |  |
|                                           | trockener und feuchter<br>Beton, sowie | Ψ <sup>0</sup> sus            | [-]         |          |        |      | 0,      | 65                   |         |         |       |  |
| E B                                       | wassergefülltes Bohrloch               |                               | <br>        | 0,57     |        |      |         |                      |         |         |       |  |
| 111. 120 0/12 0                           |                                        | C25/30                        |             | 1,02     |        |      |         |                      |         |         |       |  |
|                                           |                                        | C30/37                        |             |          |        |      |         | 04                   |         |         |       |  |
| Erhöhungsfaktor für Bet                   | on                                     | C35/45                        |             | 1,07     |        |      |         |                      |         |         |       |  |
| $\Psi_{\mathbf{c}}$                       |                                        | C40/50                        |             | 1,08     |        |      |         |                      |         |         |       |  |
|                                           |                                        | C45/55                        |             | 1,09     |        |      |         |                      |         |         |       |  |
| Betonausbruch                             |                                        | C50/60                        |             |          |        |      | 1,      | 10                   |         |         |       |  |
| Relevante Parameter                       |                                        |                               |             |          |        | s    | iehe Ta | abelle C             | 2       |         |       |  |
| Spalten                                   |                                        |                               |             |          |        |      |         |                      |         |         |       |  |
| Relevante Parameter                       |                                        |                               |             |          |        | s    | iehe Ta | abelle C             | 2       |         |       |  |
| Montagebeiwert                            |                                        | T                             | T           |          |        |      |         |                      |         |         |       |  |
| für trockenen und feuch                   |                                        | γ:4                           | [-]         | 1,0      |        |      |         | 1,2                  | l Dietı | ıng bev | werte |  |
| für wassergefülltes Bohr                  | rloch                                  | γinst                         | [-]         |          | 1      | ,4   |         | Keirie               | Leisii  | ang be  | werte |  |
|                                           |                                        |                               |             |          |        |      |         |                      |         |         |       |  |
| <b>CELO Injektionssy</b>                  | stem ResiFIX VYSF,                     | ResiFI                        | X VYSF C    | ool fi   | ür Bet | on   |         |                      |         |         |       |  |



| Dübelgröße Gewindestangen                                                                                                              |                     |       | M8                                                                        | M10 | M12                   | M16                   | M20      | M24     | M27  | M30  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|---------------------------------------------------------------------------|-----|-----------------------|-----------------------|----------|---------|------|------|--|
| Stahlversagen ohne Hebelarm                                                                                                            |                     |       |                                                                           |     |                       |                       |          |         |      |      |  |
| Charakteristische Quertragfähigkeit<br>Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und<br>5.8                                               | V <sup>0</sup> Rk,s | [kN]  |                                                                           | 0   | ,6 • A <sub>s</sub> • | f <sub>uk</sub> (ode  | er siehe | Tabelle | C1)  |      |  |
| Charakteristische Quertragfähigkeit<br>Stahl, Festigkeitsklasse 8.8<br>Nichtrostender Stahl A2, A4 und HCR,<br>alle Festigkeitsklassen | V <sup>0</sup> Rk,s | [kN]  |                                                                           | 0   | ,5 • A <sub>s</sub> • | f <sub>uk</sub> (ode  | er siehe | Tabelle | C1)  |      |  |
| Teilsicherheitsbeiwert                                                                                                                 | γ <sub>Ms,V</sub>   | [-]   |                                                                           |     |                       | siehe T               | abelle C | :1      |      |      |  |
| Duktilitätsfaktor                                                                                                                      | k <sub>7</sub>      | [-]   |                                                                           |     |                       |                       | 1,0      |         |      |      |  |
| Stahlversagen mit Hebelarm                                                                                                             |                     |       |                                                                           |     |                       |                       |          |         |      |      |  |
| Charakteristisches Biegemoment                                                                                                         | M <sup>0</sup> Rk,s | [Nm]  |                                                                           | 1,  | 2 · W <sub>el</sub>   | • f <sub>uk</sub> (od | er siehe | Tabelle | C1)  |      |  |
| Elastisches Widerstandsmoment                                                                                                          | W <sub>el</sub>     | [mm³] | 31                                                                        | 62  | 109                   | 277                   | 541      | 935     | 1387 | 1874 |  |
| Teilsicherheitsbeiwert                                                                                                                 | γMs,∨               | [-]   |                                                                           |     |                       | siehe T               | abelle C | 1       |      |      |  |
| Betonausbruch auf der lastabgewandt                                                                                                    | en Seite            |       |                                                                           |     |                       |                       |          |         |      |      |  |
| Faktor                                                                                                                                 | k <sub>8</sub>      | [-]   |                                                                           |     |                       | :                     | 2,0      |         |      |      |  |
| Montagebeiwert                                                                                                                         | γ <sub>inst</sub>   | [-]   |                                                                           |     |                       |                       | 1,0      |         |      |      |  |
| Betonkantenbruch                                                                                                                       | •                   |       |                                                                           |     |                       |                       |          |         |      |      |  |
| Effektive Dübellänge                                                                                                                   | I <sub>f</sub>      | [mm]  | min(h <sub>ef</sub> ; 12 · d <sub>nom</sub> ) min(h <sub>ef</sub> ; 300mm |     |                       |                       |          |         |      |      |  |
| Außendurchmesser des Dübels                                                                                                            | d <sub>nom</sub>    | [mm]  | 8                                                                         | 10  | 12                    | 16                    | 20       | 24      | 27   | 30   |  |
| Montagebeiwert                                                                                                                         | γinst               | [-]   |                                                                           | 1   |                       | 1                     | 1,0      | •       |      | 1    |  |

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                                          |            |
|----------------------------------------------------------------------------------------------------------|------------|
| Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung | Anhang C 4 |



| charakteristische Zugtragfäh<br>estigkeitsklasse<br>eilsicherheitsbeiwert 5.8 und<br>charakteristische Zugtragfäh                                  | igkeit, Stahl, 5.8                          |                    |                                        |             |             |             |               |           |           |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|----------------------------------------|-------------|-------------|-------------|---------------|-----------|-----------|--|--|--|
| estigkeitsklasse<br>eilsicherheitsbeiwert 5.8 und<br>harakteristische Zugtragfäh                                                                   | igkeit, Stahl, <u>5.8</u>                   |                    |                                        |             |             |             |               |           |           |  |  |  |
| eilsicherheitsbeiwert 5.8 und<br>Charakteristische Zugtragfäh                                                                                      |                                             | N <sub>Rk,s</sub>  | [kN]                                   | 10          | 17          | 29          | 42            | 76        | 123       |  |  |  |
| Charakteristische Zugtragfäh                                                                                                                       | 8.8                                         | IN,5               |                                        | 16          | 27          | 46          | 67            | 121       | 196       |  |  |  |
|                                                                                                                                                    |                                             | γMs,N              | [-]                                    |             |             | 1           | ,5            |           |           |  |  |  |
| nchirostender Stani A4 und                                                                                                                         | igkeit,<br>HCR, Klasse 70 <sup>2)</sup>     | N <sub>Rk,s</sub>  | [kN]                                   | 14          | 26          | 41          | 59            | 110       | 124       |  |  |  |
| eilsicherheitsbeiwert                                                                                                                              |                                             | γ <sub>Ms,N</sub>  | [-]                                    |             |             | 1,87        |               |           | 2,86      |  |  |  |
| Combiniertes Versagen dui                                                                                                                          | ch Herausziehen                             | und Be             | tonausb                                | ruch        |             |             |               |           |           |  |  |  |
| harakteristische Verbundtra                                                                                                                        | gfähigkeit im unge                          | rissenen           | Beton C                                | 20/25       |             |             |               |           |           |  |  |  |
| l: 40°C/24°C                                                                                                                                       | trockener und                               |                    |                                        | 12          | 12          | 12          | 12            | 11        | 9         |  |  |  |
| 발 도 II: 80°C/50°C                                                                                                                                  | feuchter Beton                              |                    |                                        | 9           | 9           | 9           | 9             | 8,5       | 6,5       |  |  |  |
|                                                                                                                                                    | Toddinor Boton                              | τοι                | [N/mm²]                                | 6,5         | 6,5         | 6,5         | 6,5           | 6,5       | 5,0       |  |  |  |
| 출 및 I: 40°C/24°C                                                                                                                                   | wassergefülltes                             | *RK,ucr            | [[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 8,5         | 8,5         | 8,5         |               |           |           |  |  |  |
| <u>o</u>                                                                                                                                           | wassergefülltes Bohrloch                    |                    |                                        | 6,5         | 6,5         | 6,5         | Keine L       | eistung b | ewertet   |  |  |  |
| III: 120°C/72°C                                                                                                                                    |                                             |                    |                                        | 5,0         | 5,0         | 5,0         |               |           |           |  |  |  |
| harakteristische Verbundtra                                                                                                                        | gfähigkeit im geris:                        | senen B            | eton C20                               | /25         |             |             |               |           |           |  |  |  |
| l: 40°C/24°C                                                                                                                                       | trockener und                               |                    |                                        | 5,0         | 5,5         | 5,5         | 5,5           | 5,5       | 6,5       |  |  |  |
| غ <u>ر II: 80°C/50°C</u>                                                                                                                           | feuchter Beton                              |                    |                                        | 3,5         | 4,0         | 4,0         | 4,0           | 4,0       | 4,5       |  |  |  |
| II: 80°C/50°C                                                                                                                                      | Tedenter Beton                              | J <sub>τ_</sub> .  | [N/mm²]                                | 2,5         | 3,0         | 3,0         | 3,0           | 3,0       | 3,5       |  |  |  |
| ဋီ စွီ ၂: 40°C/24°C                                                                                                                                |                                             | <sup>τ</sup> Rk,cr | ן ווווואון                             | 4,0         | 5,5         | 5,5         |               |           |           |  |  |  |
| <u>o</u>                                                                                                                                           | wassergefülltes Bohrloch                    |                    |                                        | 3,0         | 4,0         | 4,0         | Keine L       | eistung b | ewertet   |  |  |  |
| III: 120°C/72°C                                                                                                                                    | Dominoch                                    |                    |                                        | 2,5         | 3,0         | 3,0         |               |           |           |  |  |  |
| teduktionsfaktor ψ <sup>0</sup> sus im ge                                                                                                          | rissenen und unge                           | rissener           | n Beton C                              | 20/25       |             |             |               |           |           |  |  |  |
| ਜ਼੍ਰੇ ।: 40°C/24°C                                                                                                                                 | trockener und                               |                    |                                        |             |             | 0,          | 73            |           |           |  |  |  |
|                                                                                                                                                    | feuchter Beton,<br>sowie<br>wassergefülltes | Ψ <sup>0</sup> sus | [-]                                    | 0,65        |             |             |               |           |           |  |  |  |
| ਰ ਜੋ Ⅲ: 120°C/72°C                                                                                                                                 | Bohrloch                                    |                    |                                        | 0,57        |             |             |               |           |           |  |  |  |
|                                                                                                                                                    |                                             |                    | 5/30                                   |             |             | 1,          | 02            |           |           |  |  |  |
|                                                                                                                                                    |                                             |                    | 0/37                                   |             |             |             | 04            |           |           |  |  |  |
| rhöhungsfaktor für Beton                                                                                                                           |                                             |                    | 5/45                                   |             |             |             | 07            |           |           |  |  |  |
| (c                                                                                                                                                 |                                             | C4                 | 0/50                                   | 1,08        |             |             |               |           |           |  |  |  |
|                                                                                                                                                    |                                             |                    | 5/55                                   | 1,09        |             |             |               |           |           |  |  |  |
|                                                                                                                                                    |                                             | C5                 | 0/60                                   | 1,10        |             |             |               |           |           |  |  |  |
| Betonausbruch                                                                                                                                      |                                             |                    | П                                      |             |             | ., _        |               |           |           |  |  |  |
| Relevante Parameter                                                                                                                                |                                             |                    |                                        |             |             | siehe Ta    | pelle C2      |           |           |  |  |  |
| palten                                                                                                                                             |                                             |                    |                                        |             |             | ·           |               |           |           |  |  |  |
| Relevante Parameter                                                                                                                                |                                             |                    |                                        |             |             | siehe Ta    | ibelle C2     |           |           |  |  |  |
| Iontagebeiwert                                                                                                                                     | oton                                        |                    |                                        |             |             | 4           | 2             |           |           |  |  |  |
| ir trockenen und feuchten B                                                                                                                        | eion                                        | γinst              | [-]                                    |             |             | 1           | ,2<br>Keine L | eistung b | ewertet   |  |  |  |
| ir wassergefülltes Bohrloch                                                                                                                        |                                             |                    |                                        |             | 1,4         |             |               |           |           |  |  |  |
| <sup>1)</sup> Befestigungsschrauben ode<br>der Innengewindehülsen en<br>Festigkeitsklasse gelten für<br><sup>2)</sup> für IG-M20 Festigkeitsklasse | tsprechen. Die char<br>die Innengewindest   | akteristis         | chen Tra                               | gfähigkeite | en für Stah | lversagen ( |               |           | itsklasse |  |  |  |
| CELO Injektionssysten                                                                                                                              | n ResiFIX VYSF                              | , Resil            | FIX VYS                                | F Cool      | für Beto    | n           |               | ınhang    |           |  |  |  |



1,0

| Dübelgröße Innengewinde                                                                                      | eankers            | tangen              |       | IG-M6                                                                  | IG-M8 | IG-M10 | IG-M12 | IG-M16 | IG-M20 |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------|------------------------------------------------------------------------|-------|--------|--------|--------|--------|--|--|--|
| Stahlversagen ohne Hebe                                                                                      | larm <sup>1)</sup> |                     |       |                                                                        |       |        |        |        |        |  |  |  |
| Charakteristische                                                                                            | 5.8                | V <sup>0</sup> Rk,s | [kN]  | 5                                                                      | 9     | 15     | 21     | 38     | 61     |  |  |  |
| Quertragfähigkeit,<br>Stahl, Festigkeitsklasse                                                               | 8.8                | V <sup>0</sup> Rk,s | [kN]  | 8                                                                      | 14    | 23     | 34     | 60     | 98     |  |  |  |
| Teilsicherheitsbeiwert 5.8 u                                                                                 | nd 8.8             | γ <sub>Ms,V</sub>   | [-]   |                                                                        |       |        | 1,25   |        | 1      |  |  |  |
| Charakteristische<br>Quertragfähigkeit,<br>nicht-rostender Stahl A4 un<br>Festigkeitsklasse 70 <sup>2)</sup> | d HCR,             | V <sup>0</sup> Rk,s | [kN]  | 7                                                                      | 13    | 20     | 30     | 55     | 40     |  |  |  |
| Teilsicherheitsbeiwert                                                                                       |                    | γ <sub>Ms,V</sub>   | [-]   |                                                                        |       | 1,56   |        |        | 2,38   |  |  |  |
| Duktilitätsfaktor                                                                                            |                    | k <sub>7</sub>      | [-]   |                                                                        |       |        | 1,0    |        |        |  |  |  |
| Stahlversagen mit Hebela                                                                                     | rm¹)               |                     |       |                                                                        |       |        |        |        |        |  |  |  |
| Charakteristisches                                                                                           | 5.8                | M <sup>0</sup> Rk,s | [Nm]  | 8                                                                      | 19    | 37     | 66     | 167    | 325    |  |  |  |
| Biegemoment,<br>Stahl, Festigkeitsklasse                                                                     | 8.8                | M <sup>0</sup> Rk,s | [Nm]  | 12                                                                     | 30    | 60     | 105    | 267    | 519    |  |  |  |
| Teilsicherheitsbeiwert 5.8 u                                                                                 | nd 8.8             | γ <sub>Ms,V</sub>   | [-]   |                                                                        | •     |        | 1,25   |        | •      |  |  |  |
| Charakteristisches Biegemonicht-rostender Stahl A4 un<br>Festigkeitsklasse 70 <sup>2)</sup>                  |                    | M <sup>0</sup> Rk,s | [Nm]  | 11                                                                     | 26    | 52     | 92     | 233    | 456    |  |  |  |
| Teilsicherheitsbeiwert                                                                                       |                    | $\gamma_{Ms,V}$     | [-]   |                                                                        |       | 1,56   |        |        | 2,38   |  |  |  |
| Betonausbruch auf der la                                                                                     | stabgev            | vandten S           | Seite |                                                                        |       |        |        |        |        |  |  |  |
| Faktor                                                                                                       |                    | k <sub>8</sub>      | [-]   |                                                                        |       |        | 2,0    |        |        |  |  |  |
| Montagebeiwert                                                                                               |                    | γinst               | [-]   |                                                                        |       |        | 1,0    |        |        |  |  |  |
| Betonkantenbruch                                                                                             |                    | •                   | •     |                                                                        |       |        |        |        |        |  |  |  |
| Effektive Dübellänge                                                                                         |                    | I <sub>f</sub>      | [mm]  | min(h <sub>ef</sub> ; 12 · d <sub>nom</sub> ) min(h <sub>ef</sub> ; 30 |       |        |        |        |        |  |  |  |
| Außendurchmesser des Dü                                                                                      | bels               | d <sub>nom</sub>    | [mm]  | 10                                                                     | 12    | 16     | 20     | 24     | 30     |  |  |  |
|                                                                                                              |                    |                     |       |                                                                        |       |        |        |        |        |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindehülsen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindestange und die zugehörigen Befestigungsmittel.

[-]

γinst

Montagebeiwert

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                                          |            |
|----------------------------------------------------------------------------------------------------------|------------|
| Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung | Anhang C 6 |

<sup>2)</sup> für IG-M20 Festigkeitsklasse 50 gültig



| D" 1 "0 D 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ung                 | П            |            | امنيما     |            |            | · - · ·                            |            |            |            |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|------------|------------|------------|------------|------------------------------------|------------|------------|------------|------------|
| Dübelgröße Betonstahl<br>Stahlversagen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |              | Ø8         | Ø 10       | Ø 12       | Ø 14       | Ø 16                               | Ø 20       | Ø 25       | Ø 28       | Ø 32       |
| Charakteristische Zugtragfähigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N <sub>Rk,s</sub>   | [kN]         |            |            |            |            | \ <sub>s</sub> • f <sub>uk</sub> ¹ | )          |            |            |            |
| Stahlspannungsquerschnitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A <sub>s</sub>      | [mm²]        | 50         | 79         | 113        | 154        | 201                                | 314        | 491        | 616        | 804        |
| Teilsicherheitsbeiwert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |              | 50         | / 9        | 113        | 134        | 1,4 <sup>2)</sup>                  | 314        | 491        | 010        | 004        |
| Teilsicherneitsbeiwert<br>Kombiniertes Versagen durch Herauszi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | γMs,N               | [-]          | o b ruo    | <u> </u>   |            |            | 1,4-/                              |            |            |            |            |
| Charakteristische Verbundtragfähigkeit im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |              |            |            |            |            |                                    |            |            |            |            |
| I: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ligensse            |              | 10         | 12         | 12         | 12         | 12                                 | 12         | 11         | 10         | 8,5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              | 7,5        | 9          | 9          | 9          | 9                                  | 9          | 8,0        | 7,0        | 6,0        |
| The second second fear and fea | ] <sub>τ</sub>      | [N/mm²]      | 5,5        | 6,5        | 6,5        | 6,5        | 6,5                                | 6,5        | 6,0        | 5,0        | 4,5        |
| l: 40°C/24°C wassergefülltes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>τ</sup> Rk,ucr | [[N/]]       | 7,5        | 8,5        | 8,5        | 8,5        | 8,5                                |            |            |            |            |
| II: 80°C/50°C Wassergeruntes Bohrloch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |              | 5,5        | 6,5        | 6,5        | 6,5        | 6,5                                | Keine      | werte      |            |            |
| III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              | 4,0        | 5,0        | 5,0        | 5,0        | 5,0                                |            |            |            |            |
| Charakteristische Verbundtragfähigkeit im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gerissene<br>T      | en Beton (   |            |            |            |            | 1                                  |            |            |            |            |
| l: 40°C/24°C trockener und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |              | 4,0<br>2,5 | 5,0<br>3,5 | 5,5<br>4,0 | 5,5        | 5,5                                | 5,5        | 5,5        | 6,5        | 6,5        |
| The part of the second feuchter Beton feuchter feuchter Beton feuchter feuchter Beton feuchter feuchte feuchter feund feuchter feuchter feuchter feuchter feuchter feuchter feuchte  |                     |              | 2,5        | 2,5        | 3,0        | 4,0<br>3,0 | 4,0<br>3,0                         | 4,0<br>3,0 | 4,0<br>3,0 | 4,5<br>3,5 | 4,5<br>3,5 |
| feuchter Beton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>τ</sup> Rk,cr  | [N/mm²]      | 4,0        | 4,0        | 5,5        | 5,5        | 5,5                                | 3,0        | 3,0        | 3,3        | 3,5        |
| wassergefülltes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              | 2,5        | 3,0        | 4,0        | 4,0        | 4,0                                | Keine      | e Leistu   | ına bev    | werte      |
| III: 120°C/72°C Bohrloch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |              | 2,0        | 2,5        | 3,0        | 3,0        | 3,0                                |            |            |            |            |
| Reduktionsfaktor ${\psi^0}_{	extsf{sus}}$ im gerissenen und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ungeriss            | enen Beto    | n C20/     | 25         |            |            |                                    |            |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |            |            |            |            | 0,73                               |            |            |            |            |
| The second second second second second feuchter Beton, sowie wassergefülltes Bohrloch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ψ <sup>0</sup> sus  | [-]          |            |            |            |            | 0,65                               |            |            |            |            |
| wassergefülltes   III: 120°C/72°C   Bohrloch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | 0,57         |            |            |            |            |                                    |            |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2                  | 5/30         |            |            |            |            | 1,02                               |            |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 0/37         |            |            |            |            |                                    |            |            |            |            |
| Erhöhungsfaktor für Beton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 5/45         | 1,07       |            |            |            |                                    |            |            |            |            |
| Ψe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 0/50<br>5/55 | 1,08       |            |            |            |                                    |            |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 0/60         |            |            |            |            |                                    |            |            |            |            |
| Betonausbruch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |              |            |            |            |            | 1,10                               |            |            |            |            |
| Relevante Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |              |            |            |            | siehe      | Tabell                             | e C2       |            |            |            |
| Spalten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |              |            |            |            |            |                                    |            |            |            |            |
| Relevante Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |              |            |            |            | siehe      | Tabell                             | e C2       |            |            |            |
| Montagebeiwert<br>für trockenen und feuchten Beton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |              | 1.0        |            |            |            | 1,                                 | 2          |            |            |            |
| für wassergefülltes Bohrloch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | γinst               | [-]          | 1,0        |            | 1,4        |            | I,                                 |            | e Leistu   | ing bev    | werte      |
| 1) f <sub>uk</sub> ist den Spezifikationen des Betonstahls<br>2) Sofern andere nationalen Regelungen feh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | l<br>hmen    |            |            |            |            |                                    |            |            |            |            |
| CELO Injektionssystem ResiFIX \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YSF, R              | esiFIX V     | YSF (      | Cool fi    | ür Bet     | on         |                                    |            | Anha       | na C       | <br>7      |



| Dübelgröße Betonstahl                  |                                |       | Ø 8                                                         | Ø 10 | Ø 12 | Ø 14 | Ø 16                 | Ø 20                          | Ø 25 | Ø 28 | Ø 32 |  |
|----------------------------------------|--------------------------------|-------|-------------------------------------------------------------|------|------|------|----------------------|-------------------------------|------|------|------|--|
| Stahlversagen ohne Hebelarm            |                                |       |                                                             |      |      |      |                      |                               | •    |      |      |  |
| Charakteristische<br>Quertragfähigkeit | V <sup>0</sup> Rk,s            | [kN]  |                                                             |      |      | 0,5  | 0 · A <sub>s</sub> · | f <sub>uk</sub> <sup>2)</sup> |      |      |      |  |
| Stahlspannungsquerschnitt              | A <sub>s</sub>                 | [mm²] | 50                                                          | 79   | 113  | 154  | 201                  | 314                           | 491  | 616  | 804  |  |
| Teilsicherheitsbeiwert                 | γ <sub>Ms,V</sub>              | [-]   | 1,5 <sup>2)</sup>                                           |      |      |      |                      |                               |      |      |      |  |
| Duktilitätsfaktor                      | k <sub>7</sub>                 | [-]   |                                                             |      |      |      | 1,0                  |                               |      |      |      |  |
| Stahlversagen mit Hebelarm             |                                |       |                                                             |      |      |      |                      |                               |      |      |      |  |
| Charakteristische Biegemoment          | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]  | 1.2 • W <sub>el</sub> • f <sub>uk</sub> <sup>1)</sup>       |      |      |      |                      |                               |      |      |      |  |
| Elastisches Widerstandsmoment          | W <sub>el</sub>                | [mm³] | 50                                                          | 98   | 170  | 269  | 402                  | 785                           | 1534 | 2155 | 3217 |  |
| Teilsicherheitsbeiwert                 | γ <sub>Ms,V</sub>              | [-]   |                                                             | ı    |      |      | 1,5 <sup>2)</sup>    | ı                             |      |      |      |  |
| Betonausbruch auf der lastabge         | ewandten S                     | Seite |                                                             |      |      |      |                      |                               |      |      |      |  |
| Faktor                                 | k <sub>8</sub>                 | [-]   |                                                             |      |      |      | 2,0                  |                               |      |      |      |  |
| Montagebeiwert                         | γinst                          | [-]   |                                                             |      |      |      | 1,0                  |                               |      |      |      |  |
| Betonkantenbruch                       |                                |       |                                                             |      |      |      |                      |                               |      |      |      |  |
| Effektive Dübellänge                   | I <sub>f</sub>                 | [mm]  | $\min(h_{ef}; 12 \cdot d_{nom}) \qquad \min(h_{ef}; 300mm)$ |      |      |      |                      |                               |      |      |      |  |
| Außendurchmesser des Dübels            | d <sub>nom</sub>               | [mm]  | 8                                                           | 10   | 12   | 14   | 16                   | 20                            | 25   | 28   | 32   |  |
| Montagebeiwert                         | γinst                          | [-]   |                                                             |      |      |      | 1,0                  |                               |      |      |      |  |

 $<sup>^{1)}\,\</sup>rm f_{uk}$  ist den Spezifikationen des Betonstahls zu entnehmen  $^{2)}$  Sofern andere nationalen Regelungen fehlen

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                                          |            |
|----------------------------------------------------------------------------------------------------------|------------|
| Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung | Anhang C 8 |



| Tabelle C9: V     | erschiebu                                | ung unter Zugbe        | anspru     | chung    | 1) (Gew  | vindes | tange) |       |       |       |  |
|-------------------|------------------------------------------|------------------------|------------|----------|----------|--------|--------|-------|-------|-------|--|
| Dübelgröße Gewin  | destange                                 |                        | M8         | M10      | M12      | M16    | M20    | M24   | M27   | M30   |  |
| Ungerissener Beto | on C20/25 ur                             | ıter statischer und qı | ıasi-stati | scher Be | elastung | ]      |        |       |       | •     |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor                  | [mm/(N/mm²)]           | 0,021      | 0,023    | 0,026    | 0,031  | 0,036  | 0,041 | 0,045 | 0,049 |  |
| I: 40°C/24°C      | δ <sub>N∞</sub> -Faktor                  | [mm/(N/mm²)]           | 0,030      | 0,033    | 0,037    | 0,045  | 0,052  | 0,060 | 0,065 | 0,071 |  |
| Temperaturbereich | $\delta_{\text{N0}}	ext{-}\text{Faktor}$ | [mm/(N/mm²)]           | 0,050      | 0,056    | 0,063    | 0,075  | 0,088  | 0,100 | 0,110 | 0,119 |  |
| II: 80°C/50°C     | δ <sub>N∞</sub> -Faktor                  | [mm/(N/mm²)]           | 0,072      | 0,081    | 0,090    | 0,108  | 0,127  | 0,145 | 0,159 | 0,172 |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor                  | [mm/(N/mm²)]           | 0,050      | 0,056    | 0,063    | 0,075  | 0,088  | 0,100 | 0,110 | 0,119 |  |
| III: 120°C/72°C   | δ <sub>N∞</sub> -Faktor                  | [mm/(N/mm²)]           | 0,072      | 0,081    | 0,090    | 0,108  | 0,127  | 0,145 | 0,159 | 0,172 |  |
| Gerissener Beton  | C20/25 unte                              | r statischer und quas  | i-statisch | ner Bela | stung    |        |        |       |       |       |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor                  | [mm/(N/mm²)]           | 0,0        | 90       |          |        | 0,0    | 70    |       |       |  |
| I: 40°C/24°C      | δ <sub>N∞</sub> -Faktor                  | [mm/(N/mm²)]           | 0,1        | 105      | 0,105    |        |        |       |       |       |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor                  | [mm/(N/mm²)]           | 0,2        | 219      |          |        | 0,1    | 70    |       |       |  |
| II: 80°C/50°C     | δ <sub>N∞</sub> -Faktor                  | [mm/(N/mm²)]           | 0,2        | 255      |          |        | 0,2    | 245   |       |       |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor                  | [mm/(N/mm²)]           | 0,2        | 219      |          |        | 0,1    | 70    |       |       |  |
| III. 40000 /7000  | δ <sub>N∞</sub> -Faktor                  | [mm/(N/mm²)]           | 0,2        | 255      |          |        | 0,2    | 245   |       |       |  |

<sup>1)</sup> Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \quad \cdot \ \tau; \qquad \qquad \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$ 

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor  $\cdot \tau$ ;

#### Tabelle C10: Verschiebung unter Querbeanspruchung<sup>1)</sup> (Gewindestange)

| Dübelgröße Gewindestange                                                  |                         |         | M8   | M10  | M12  | M16  | M20  | M24  | M27  | M30  |  |
|---------------------------------------------------------------------------|-------------------------|---------|------|------|------|------|------|------|------|------|--|
| Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung |                         |         |      |      |      |      |      |      |      |      |  |
| Alle                                                                      | δ <sub>v0</sub> -Faktor | [mm/kN] | 0,06 | 0,06 | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |  |
| Temperaturbereiche                                                        | δ <sub>∨∞</sub> -Faktor | [mm/kN] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |  |
| Gerissener Beton C20/25 unter statischer und quasi-statischer Belastung   |                         |         |      |      |      |      |      |      |      |      |  |
| Alle                                                                      | δ <sub>v0</sub> -Faktor | [mm/kN] | 0,12 | 0,12 | 0,11 | 0,10 | 0,09 | 0,08 | 0,08 | 0,07 |  |
| Temperaturbereiche                                                        | δ <sub>∨∞</sub> -Faktor | [mm/kN] | 0,18 | 0,18 | 0,17 | 0,15 | 0,14 | 0,13 | 0,12 | 0,10 |  |

<sup>1)</sup> Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V; V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V;

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                           |            |
|-------------------------------------------------------------------------------------------|------------|
| Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange) | Anhang C 9 |



| Dübelgröße Inneng                         | jewindeankers                | tange               | IG-M6                   | IG-M8     | IG-M10 | IG-M12 | IG-M16 | IG-M20 |
|-------------------------------------------|------------------------------|---------------------|-------------------------|-----------|--------|--------|--------|--------|
| Ungerissener Beto                         | n C20/25 unter               | statischer und qua  | asi-statiso             | her Belas | stung  |        |        |        |
| Temperaturbereich                         | δ <sub>N0</sub> -Faktor      | [mm/(N/mm²)]        | 0,023                   | 0,026     | 0,031  | 0,036  | 0,041  | 0,049  |
| I: 40°C/24°C                              | δ <sub>N∞</sub> -Faktor      | [mm/(N/mm²)]        | 0,033                   | 0,037     | 0,045  | 0,052  | 0,060  | 0,071  |
| Temperaturbereich δ <sub>N0</sub> -Faktor |                              | [mm/(N/mm²)]        | 0,056                   | 0,063     | 0,075  | 0,088  | 0,100  | 0,119  |
| II: 80°C/50°C                             | δ <sub>N∞</sub> -Faktor      | [mm/(N/mm²)]        | 0,081                   | 0,090     | 0,108  | 0,127  | 0,145  | 0,172  |
| Temperaturbereich                         | δ <sub>N0</sub> -Faktor      | [mm/(N/mm²)]        | 0,056 0,063 0,075 0,088 |           | 0,088  | 0,100  | 0,119  |        |
| III: 120°C/72°C                           | δ <sub>N∞</sub> -Faktor      | [mm/(N/mm²)]        | 0,081                   | 0,090     | 0,108  | 0,127  | 0,145  | 0,172  |
| Gerissener Beton (                        | C20/25 unter st              | atischer, quasi-sta | tischer Be              | elastung  |        |        |        |        |
| Temperaturbereich                         | $\delta_{\text{N0}}$ -Faktor | [mm/(N/mm²)]        | 0,090                   |           |        | 0,070  |        |        |
| l: 40°C/24°C                              | δ <sub>N∞</sub> -Faktor      | [mm/(N/mm²)]        | 0,105                   |           |        | 0,105  |        |        |
| Temperaturbereich                         | $\delta_{\text{N0}}$ -Faktor | [mm/(N/mm²)]        | 0,219                   |           |        | 0,170  |        |        |
| II: 80°C/50°C δ <sub>N∞</sub> -Faktor [n  |                              | [mm/(N/mm²)]        | 0,255                   |           |        | 0,245  |        |        |
| Temperaturbereich                         | $\delta_{\text{N0}}$ -Faktor | [mm/(N/mm²)]        | 0,219                   |           |        | 0,170  |        |        |
| III: 120°C/72°C                           | δ <sub>N∞</sub> -Faktor      | [mm/(N/mm²)]        | 0,255                   |           |        | 0,245  |        |        |

<sup>1)</sup> Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau; \hspace{1cm} \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$ 

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor  $\cdot \tau$ ;

#### Tabelle C12: Verschiebung unter Querbeanspruchung<sup>1)</sup> (Innengewindeankerstange)

| Dübelgröße Innenge                                                                       | ewindeankers            | stangen | IG-M6 | IG-M8 | IG-M10 | IG-M12 | IG-M16 | IG-M20 |  |
|------------------------------------------------------------------------------------------|-------------------------|---------|-------|-------|--------|--------|--------|--------|--|
| Gerissener und ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung |                         |         |       |       |        |        |        |        |  |
| Alle                                                                                     | δ <sub>v0</sub> -Faktor | [mm/kN] | 0,07  | 0,06  | 0,06   | 0,05   | 0,04   | 0,04   |  |
| Temperaturbereiche                                                                       | δ <sub>V∞</sub> -Faktor | [mm/kN] | 0,10  | 0,09  | 0,08   | 0,08   | 0,06   | 0,06   |  |

<sup>1)</sup> Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor· V; V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor· V;

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton |
|-----------------------------------------------------------------|
|                                                                 |

Anhang C 10

Leistungen

Verschiebungen unter statischer und quasi-statischer Belastung (Innengewindeankerstange)



| Dübelgröße Betor  | nstahl                  |                  | Ø 8      | Ø 10      | Ø 12     | Ø 14    | Ø 16  | Ø 20  | Ø 25  | Ø 28  | Ø 32  |  |
|-------------------|-------------------------|------------------|----------|-----------|----------|---------|-------|-------|-------|-------|-------|--|
| Ungerissener Bet  | on C20/25 ι             | ınter statischei | r und qu | ıasi-stat | ischer B | elastun | g     |       |       |       |       |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor | [mm/(N/mm²)]     | 0,021    | 0,023     | 0,026    | 0,028   | 0,031 | 0,036 | 0,043 | 0,047 | 0,052 |  |
| I: 40°C/24°C      | δ <sub>N∞</sub> -Faktor | [mm/(N/mm²)]     | 0,030    | 0,033     | 0,037    | 0,041   | 0,045 | 0,052 | 0,061 | 0,071 | 0,075 |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor | [mm/(N/mm²)]     | 0,050    | 0,056     | 0,063    | 0,069   | 0,075 | 0,088 | 0,104 | 0,113 | 0,126 |  |
| II: 80°C/50°C     | δ <sub>N∞</sub> -Faktor | [mm/(N/mm²)]     | 0,072    | 0,081     | 0,090    | 0,099   | 0,108 | 0,127 | 0,149 | 0,163 | 0,181 |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor | [mm/(N/mm²)]     | 0,050    | 0,056     | 0,063    | 0,069   | 0,075 | 0,088 | 0,104 | 0,113 | 0,126 |  |
| III: 120°C/72°C   | δ <sub>N∞</sub> -Faktor | [mm/(N/mm²)]     | 0,072    | 0,081     | 0,090    | 0,099   | 0,108 | 0,127 | 0,149 | 0,163 | 0,181 |  |
| Gerissener Beton  | C20/25 unt              | er statischer u  | nd quas  | i-statisc | her Bela | stung   |       |       |       |       |       |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor | [mm/(N/mm²)]     | 0,0      | 90        |          |         |       | 0,070 |       |       |       |  |
| I: 40°C/24°C      | δ <sub>N∞</sub> -Faktor | [mm/(N/mm²)]     | 0,1      | 105       |          |         |       | 0,105 |       |       |       |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor | [mm/(N/mm²)]     | 0,2      | 219       |          |         |       | 0,170 |       |       |       |  |
| II: 80°C/50°C     | δ <sub>N∞</sub> -Faktor | [mm/(N/mm²)]     | 0,2      | 255       |          |         |       | 0,245 |       |       |       |  |
| Temperaturbereich | δ <sub>N0</sub> -Faktor | [mm/(N/mm²)]     | 0,2      | 219       |          |         |       | 0,170 |       |       |       |  |
| III: 120°C/72°C   | δ <sub>N∞</sub> -Faktor | [mm/(N/mm²)]     | 0,2      | 255       | 0,245    |         |       |       |       |       |       |  |

<sup>1)</sup> Berechnung der Verschiebung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor  $\cdot \tau$ ;

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \quad \tau; \qquad \qquad \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$ 

#### Tabelle C14: Verschiebung unter Querbeanspruchung<sup>1)</sup> (Betonstahl)

| Dübelgröße Betonstahl                                                     |                         |             |         | Ø 10      | Ø 12     | Ø 14  | Ø 16 | Ø 20 | Ø 25 | Ø 28 | Ø 32 |
|---------------------------------------------------------------------------|-------------------------|-------------|---------|-----------|----------|-------|------|------|------|------|------|
| Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung |                         |             |         |           |          |       |      |      |      |      |      |
| Alle                                                                      | δ <sub>v0</sub> -Faktor | [mm/kN]     | 0,06    | 0,05      | 0,05     | 0,04  | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| Temperaturbereiche                                                        | δ <sub>V∞</sub> -Faktor | [mm/kN]     | 0,09    | 0,08      | 0,08     | 0,06  | 0,06 | 0,05 | 0,05 | 0,04 | 0,04 |
| Gerissener Beton C                                                        | 20/25 unter s           | tatischer u | nd quas | i-statisc | her Bela | stung |      |      |      |      |      |
| Alle                                                                      | δ <sub>v0</sub> -Faktor | [mm/kN]     | 0,12    | 0,12      | 0,11     | 0,11  | 0,10 | 0,09 | 0,08 | 0,07 | 0,06 |
| Temperaturbereiche                                                        | δ <sub>V∞</sub> -Faktor | [mm/kN]     | 0,18    | 0,18      | 0,17     | 0,16  | 0,15 | 0,14 | 0,12 | 0,11 | 0,10 |

<sup>1)</sup> Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V;

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                        |             |
|----------------------------------------------------------------------------------------|-------------|
| Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl) | Anhang C 11 |

8.06.01-37/21 Z51581.21



## Tabelle C15: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

| Dük               | elgr                             | öße Gewinde     | estangen                        |                         |                       | M8                      | M 10   | M12  | M16    | M20                | M24    | M27    | M30    |  |
|-------------------|----------------------------------|-----------------|---------------------------------|-------------------------|-----------------------|-------------------------|--------|------|--------|--------------------|--------|--------|--------|--|
|                   |                                  | rsagen          | J                               |                         |                       |                         |        |      |        |                    |        |        |        |  |
| Cha               | rakte                            | eristische Zug  | tragfähigkeit                   | N <sub>Rk,s,eq,C1</sub> | [kN]                  | 1,0 • N <sub>Rk,s</sub> |        |      |        |                    |        |        |        |  |
| Teil              | siche                            | erheitsbeiwert  |                                 | $\gamma_{Ms,N}$         | [-]                   |                         |        | si   | ehe Ta | abelle C           | 71     |        |        |  |
| Kor               | nbin                             | iertes Versag   | jen durch Herausziehe           | n und Beton             | ausbruch              |                         |        |      |        |                    |        |        |        |  |
| Cha               | rakte                            | eristische Verb | oundtragfähigkeit im ger        | issenen und             | ungerisser            | en Bet                  | on C20 | )/25 |        |                    |        |        |        |  |
| ے ا               | I:                               | 40°C/24°C       |                                 |                         |                       | 2,5                     | 3,1    | 3,7  | 3,7    | 3,7                | 3,8    | 4,5    | 4,5    |  |
| Temperaturbereich | II:                              | 80°C/50°C       | trockener und feuchter<br>Beton |                         |                       | 1,6                     | 2,2    | 2,7  | 2,7    | 2,7                | 2,8    | 3,1    | 3,1    |  |
| urbe              | III:                             | 120°C/72°C      |                                 | _                       | [N/mm²]               | 1,3                     | 1,6    | 2,0  | 2,0    | 2,0                | 2,1    | 2,4    | 2,4    |  |
| erat              | T:                               | 40°C/24°C       |                                 | <sup>τ</sup> Rk,eq,C1   |                       | 2,5                     | 2,5    | 3,7  | 3,7    | Keine Leistung bev |        |        |        |  |
| emp               | II:                              | 80°C/50°C       | wassergefülltes<br>Bohrloch     |                         |                       | 1,6                     | 1,9    | 2,7  | 2,7    |                    |        |        | wertet |  |
| 🖹                 | III:                             | 120°C/72°C      |                                 |                         |                       | 1,3                     | 1,6    | 2,0  | 2,0    | 1                  |        |        |        |  |
| Erh               | öhun                             | gsfaktor für B  | eton ψ <sub>c</sub>             | C25/30 bis 0            | 50/60                 |                         |        |      | 1      | ,0                 |        |        |        |  |
| Moi               | ntage                            | ebeiwert        |                                 | •                       |                       |                         |        |      |        |                    |        |        |        |  |
|                   | für trockenen und feuchten Beton |                 |                                 |                         |                       | 1,0                     |        |      |        | 1,2                |        |        |        |  |
| für v             | für wassergefülltes Bohrloch     |                 | γ <sub>inst</sub>               | [-]                     | 1,4 Keine Leistung be |                         |        |      |        |                    | ing be | wertet |        |  |

## Tabelle C16:Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

| Dübelgröße Gewindestangen           |      | М8                                        | M10 | M12 | M16     | M20                 | M24 | M27 | M30 |  |
|-------------------------------------|------|-------------------------------------------|-----|-----|---------|---------------------|-----|-----|-----|--|
| Stahlversagen ohne Hebelarm         |      |                                           |     |     |         |                     |     |     |     |  |
| Charakteristische Quertragfähigkeit | [kN] | (N] 0,70 ⋅ V <sup>0</sup> <sub>Rk,s</sub> |     |     |         |                     |     |     |     |  |
| Teilsicherheitsbeiwert              | [-]  |                                           |     |     | siehe T | abelle C            | :1  |     |     |  |
| Faktor für Ringspalt                | [-]  |                                           |     |     | 0,5     | (1,0) <sup>1)</sup> |     |     |     |  |

Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung der Verfüllscheibe gemäß Anhang A 3 ist notwendig.

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                                                        |             |
|------------------------------------------------------------------------------------------------------------------------|-------------|
| Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) | Anhang C 12 |



| Tabelle C17:Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)                                                 |                                                            |                                                                           |       |      |         |      |      |                         |      |      |      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|-------|------|---------|------|------|-------------------------|------|------|------|--|
| Dübelgröße Betonstahl                                                                                                                                         |                                                            |                                                                           |       | Ø 10 | Ø 12    | Ø 14 | Ø 16 | Ø 20                    | Ø 25 | Ø 28 | Ø 32 |  |
| Dübelgröße Betonstahl   Ø 8   Ø 10   Ø 12   Ø 14   Ø 16   Ø 20   Ø 25   Ø 28   Ø 32   Stahlversagen                                                           |                                                            |                                                                           |       |      |         |      |      |                         |      |      |      |  |
| Charakteristische Zugtragfähigkeit                                                                                                                            | N <sub>Rk,s,eq,C1</sub>                                    | $A_{\text{seq,C1}}$ [kN] $1.0 \cdot A_{\text{s}} \cdot f_{\text{uk}}^{1}$ |       |      |         |      |      |                         |      |      |      |  |
| Stahlspannungsquerschnitt                                                                                                                                     | A <sub>s</sub>                                             | [mm²<br>]                                                                 | 50    | 79   | 113     | 154  | 201  | 314                     | 491  | 616  | 804  |  |
| Teilsicherheitsbeiwert                                                                                                                                        | γ <sub>Ms,N</sub>                                          | [-]                                                                       | 1,42) |      |         |      |      |                         |      |      |      |  |
| Kombiniertes Versagen durch Herau                                                                                                                             | Kombiniertes Versagen durch Herausziehen und Betonausbruch |                                                                           |       |      |         |      |      |                         |      |      |      |  |
| Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25                                                                            |                                                            |                                                                           |       |      |         |      |      |                         |      |      |      |  |
| l: 40°C/24°C                                                                                                                                                  |                                                            | [N/m<br>m²]                                                               | 2,5   | 3,1  | 3,7     | 3,7  | 3,7  | 3,7                     | 3,8  | 4,5  | 4,5  |  |
| trockener und feuchter Beto    II: 80°C/50°C   trockener und feuchter Beto     II: 40°C/24°C   trockener und feuchter Beto     II: 80°C/50°C   wassergefüllte |                                                            |                                                                           | 1,6   | 2,2  | 2,7     | 2,7  | 2,7  | 2,7                     | 2,8  | 3,1  | 3,1  |  |
| feuchter Beto                                                                                                                                                 |                                                            |                                                                           | 1,3   | 1,6  | 2,0     | 2,0  | 2,0  | 2,0                     | 2,1  | 2,4  | 2,4  |  |
| Ö Ö I: 40°C/24°C wassergefüllte                                                                                                                               | <sup>τ</sup> Rk,eq,C1                                      |                                                                           | 2,5   | 2,5  | 3,7     | 3,7  | 3,7  | Keine Leistung bewertet |      |      |      |  |
| II: 80°C/50°C wassergefüllte                                                                                                                                  | es                                                         |                                                                           | 1,6   | 1,9  | 2,7     | 2,7  | 2,7  |                         |      |      |      |  |
| III: 120°C/72°C                                                                                                                                               |                                                            |                                                                           | 1,3   | 1,6  | 2,0     | 2,0  | 2,0  |                         |      |      |      |  |
| Erhöhungsfaktor für Beton ψ <sub>c</sub>                                                                                                                      | C25/30<br>C50/6                                            |                                                                           | 1,0   |      |         |      |      |                         |      |      |      |  |
| Montagebeiwert                                                                                                                                                |                                                            |                                                                           |       |      |         |      |      |                         |      |      |      |  |
| für trockenen und feuchten Beton                                                                                                                              |                                                            |                                                                           |       |      | 1,0 1,2 |      |      |                         |      |      |      |  |
| für wassergefülltes Bohrloch                                                                                                                                  | γ <sub>inst</sub>                                          | [-]                                                                       |       | 1,4  |         |      |      | Keine Leistung bewertet |      |      |      |  |

 $<sup>^{1)}</sup>$  fuk ist den Spezifikationen des Betonstahls zu entnehmen  $^{2)}$  Sofern andere nationalen Regelungen fehlen

#### Tabelle C18: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

| Dübelgröße Betonstahl                  |                         |       | Ø 8                                                   | Ø 10 | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 25 | Ø 28 | Ø 32 |
|----------------------------------------|-------------------------|-------|-------------------------------------------------------|------|------|------|------|------|------|------|------|
| Stahlversagen ohne Hebelarm            |                         |       |                                                       |      |      |      |      |      |      |      |      |
| Charakteristische<br>Quertragfähigkeit | V <sub>Rk,s,eq,C1</sub> | [kN]  | 0,35 • A <sub>s</sub> • f <sub>uk</sub> <sup>1)</sup> |      |      |      |      |      |      |      |      |
| Stahlspannungsquerschnitt              | A <sub>s</sub>          | [mm²] | 50                                                    | 79   | 113  | 154  | 201  | 314  | 491  | 616  | 804  |
| Teilsicherheitsbeiwert                 | γ <sub>Ms,V</sub>       | [-]   | 1,5 <sup>2)</sup>                                     |      |      |      |      |      |      |      |      |
| Faktor für Ringspalt                   | $\alpha_{\sf gap}$      | [-]   | 0,5 (1,0)3)                                           |      |      |      |      |      |      |      |      |

<sup>1)</sup> fuk ist den Spezifikationen des Betonstahls zu entnehmen

| CELO Injektionssystem ResiFIX VYSF, ResiFIX VYSF Cool für Beton                                                        |             |
|------------------------------------------------------------------------------------------------------------------------|-------------|
| Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) | Anhang C 13 |

<sup>&</sup>lt;sup>2)</sup> Sofern andere nationalen Regelungen fehlen

<sup>&</sup>lt;sup>3)</sup>Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung der Verfüllscheibe gemäß Anhang A 3 ist notwendig.